scholarly journals Exact and Limiting Probability Distributions of Some Smirnov Type Statistics

1965 ◽  
Vol 8 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Miklós Csörgo

Let F(x) be the continuous distribution function of a random variable X and Fn(x) be the empirical distribution function determined by a random sample X1, …, Xn taken on X. Using the method of Birnbaum and Tingey [1] we are going to derive the exact distributions of the random variablesand and where the indicated sup' s are taken over all x' s such that -∞ < x < xb and xa ≤ x < + ∞ with F(xb) = b, F(xa) = a in the first two cases and over all x' s so that Fn(x) ≤ b and a ≤ Fn(x) in the last two cases.

1967 ◽  
Vol 10 (5) ◽  
pp. 739-741
Author(s):  
Miklós Csörgo

Let X1 …, Xn be mutually independent random variables with a common continuous distribution function F (t). Let Fn(t) be the corresponding empirical distribution function, that isFn(t) = (number of Xi ≤ t, 1 ≤ i ≤ n)/n.Using a theorem of Manija [4], we proved among others the following statement in [1].


1967 ◽  
Vol 19 ◽  
pp. 550-558 ◽  
Author(s):  
Miklós Csörgö

Let X1 X2, … , Xn be mutually independent random variables with a common continuous distribution function F(t). Let Fn(t) be the corresponding empirical distribution function, that is Fn(t) = (number of Xi ⩽ t, 1 ⩽ i ⩽ n)/n.


1970 ◽  
Vol 7 (02) ◽  
pp. 432-439 ◽  
Author(s):  
William E. Strawderman ◽  
Paul T. Holmes

Let X 1, X2, X 3 , ··· be independent, identically distributed random variables on a probability space (Ω, F, P); and with a continuous distribution function. Let the sequence of indices {Vr } be defined as Also define The following theorem is due to Renyi [5].


1999 ◽  
Vol 31 (1) ◽  
pp. 178-198 ◽  
Author(s):  
Frans A. Boshuizen ◽  
Robert P. Kertz

In this paper, in work strongly related with that of Coffman et al. [5], Bruss and Robertson [2], and Rhee and Talagrand [15], we focus our interest on an asymptotic distributional comparison between numbers of ‘smallest’ i.i.d. random variables selected by either on-line or off-line policies. Let X1,X2,… be a sequence of i.i.d. random variables with distribution function F(x), and let X1,n,…,Xn,n be the sequence of order statistics of X1,…,Xn. For a sequence (cn)n≥1 of positive constants, the smallest fit off-line counting random variable is defined by Ne(cn) := max {j ≤ n : X1,n + … + Xj,n ≤ cn}. The asymptotic joint distributional comparison is given between the off-line count Ne(cn) and on-line counts Nnτ for ‘good’ sequential (on-line) policies τ satisfying the sum constraint ∑j≥1XτjI(τj≤n) ≤ cn. Specifically, for such policies τ, under appropriate conditions on the distribution function F(x) and the constants (cn)n≥1, we find sequences of positive constants (Bn)n≥1, (Δn)n≥1 and (Δ'n)n≥1 such that for some non-degenerate random variables W and W'. The major tools used in the paper are convergence of point processes to Poisson random measure and continuous mapping theorems, strong approximation results of the normalized empirical process by Brownian bridges, and some renewal theory.


1999 ◽  
Vol 31 (01) ◽  
pp. 178-198 ◽  
Author(s):  
Frans A. Boshuizen ◽  
Robert P. Kertz

In this paper, in work strongly related with that of Coffman et al. [5], Bruss and Robertson [2], and Rhee and Talagrand [15], we focus our interest on an asymptotic distributional comparison between numbers of ‘smallest’ i.i.d. random variables selected by either on-line or off-line policies. Let X 1,X 2,… be a sequence of i.i.d. random variables with distribution function F(x), and let X 1,n ,…,X n,n be the sequence of order statistics of X 1,…,X n . For a sequence (c n ) n≥1 of positive constants, the smallest fit off-line counting random variable is defined by N e (c n ) := max {j ≤ n : X 1,n + … + X j,n ≤ c n }. The asymptotic joint distributional comparison is given between the off-line count N e (c n ) and on-line counts N n τ for ‘good’ sequential (on-line) policies τ satisfying the sum constraint ∑ j≥1 X τ j I (τ j ≤n) ≤ c n . Specifically, for such policies τ, under appropriate conditions on the distribution function F(x) and the constants (c n ) n≥1, we find sequences of positive constants (B n ) n≥1, (Δ n ) n≥1 and (Δ' n ) n≥1 such that for some non-degenerate random variables W and W'. The major tools used in the paper are convergence of point processes to Poisson random measure and continuous mapping theorems, strong approximation results of the normalized empirical process by Brownian bridges, and some renewal theory.


1991 ◽  
Vol 4 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Lajos Takács

Let Fn(x) and Gn(x) be the empirical distribution functions of two independent samples, each of size n, in the case where the elements of the samples are independent random variables, each having the same continuous distribution function V(x) over the interval (0,1). Define a statistic θn by θn/n=∫01[Fn(x)−Gn(x)]dV(x)−min0≤x≤1[Fn(x)−Gn(x)]. In this paper the limits of E{(θn/2n)r}(r=0,1,2,…) and P{θn/2n≤x} are determined for n→∞. The problem of finding the asymptotic behavior of the moments and the distribution of θn as n→∞ has arisen in a study of the fluctuations of the inventory of locomotives in a randomly chosen railway depot.


1969 ◽  
Vol 6 (03) ◽  
pp. 711-714 ◽  
Author(s):  
Paul T. Holmes ◽  
William E. Strawderman

Let X 1, X 2, X 3,··· be independent, identically distributed random variables with a continuous distribution function and let the sequence of indices {Vr } be defined as follows: and for r ≧ 1, V r is the trial on which the rth (upper) record observation occurs. {V r} will be an infinite sequence of random variables since the underlying distribution function of the X's is continuous. It is well known that the expected value of V r. is infinite for every r (see, for example, Feller [1], page 15). Also define and for r &gt; 1 δr is the number of trials between the (r - l)th and the rth record. The distributions of the random variables Vr and δ r do not depend on the distribution of the original random variables. It can be shown (see Neuts [2], page 206 or Tata 1[4], page 26) that The following theorem is due to Neuts [2].


1970 ◽  
Vol 7 (2) ◽  
pp. 432-439 ◽  
Author(s):  
William E. Strawderman ◽  
Paul T. Holmes

Let X1, X2, X3, ··· be independent, identically distributed random variables on a probability space (Ω, F, P); and with a continuous distribution function. Let the sequence of indices {Vr} be defined as Also define The following theorem is due to Renyi [5].


Sign in / Sign up

Export Citation Format

Share Document