On Product of Radón Measures

1969 ◽  
Vol 12 (4) ◽  
pp. 427-444 ◽  
Author(s):  
M. C. Godfrey ◽  
M. Sion

Let X, Y be locally compact Hausdorff spaces and μ, ν be Radón outer measures on X and Y respectively. The classical product outer measure ϕ on X × Y generated by measurable rectangles, without direct reference to the topology, turns out to have some serious drawbacks. For example, one can only prove that closed sets (and hence Baire sets) are ϕ-measurable. It is unknown, even when X and Y are compact, whether closed sets are ϕ-measurable.

2008 ◽  
Vol 15 (1) ◽  
pp. 53-61
Author(s):  
Majid Gazor

Abstract In this paper a theorem analogous to the Aleksandrov theorem is presented in terms of measure theory. Furthermore, we introduce the condensation rank of Hausdorff spaces and prove that any ordinal number is associated with the condensation rank of an appropriate locally compact totally imperfect space. This space is equipped with a probability Borel measure which is outer regular, vanishes at singletons, and is also inner regular in the sense of closed sets.


1979 ◽  
Vol 27 (2) ◽  
pp. 248-256 ◽  
Author(s):  
Catherine L. Gates

AbstractWe are interested in determining whether two spaces are coabsolute by comparing their Boolean algebras of regular closed sets. It is known that when the spaces are compact Hausdorff they are coabsolute precisely when the Boolean algebras of regular closed sets are isomorphic; but in general this condition is not strong enough to insure that the spaces be coabsolute. In this paper we show that for paracompact Hausdorff spaces, the spaces are coabsolute when the Boolean algebra isomorphism and its inverse ‘preserve’ local finiteness, and for locally compact paracompact Hausdorff spaces, the spaces are coabsolute when the collections of compact regular closed subsets are ‘isomorphic’.


2019 ◽  
Vol 170 (5) ◽  
pp. 558-577
Author(s):  
Guram Bezhanishvili ◽  
Nick Bezhanishvili ◽  
Joel Lucero-Bryan ◽  
Jan van Mill

1971 ◽  
Vol 23 (3) ◽  
pp. 544-549
Author(s):  
G. E. Peterson

The purpose of this paper is to prove that o(l/x) is the best possible Tauberian condition for the collective continuous Hausdorff method of summation. The analogue of this result for the collective (discrete) Hausdorff method is known [1, pp. 229, ff.; 7, p. 318; 8, p. 254]. Our method involves generalizing a well-known Abelian theorem of Agnew [2] to locally compact spaces and then applying the analogue for integrals of a result Lorentz obtained for series [6, Theorem 1].Let T and X denote locally compact, non compact, σ-compact Hausdorff spaces. Let T′ = T ∪ (∞) and X′ = X ∪ (∞) denote the onepoint compactifications of T and X, respectively. Let B(T) denote the set of locally bounded, complex valued Borel functions on T and let B∞(T) denote the bounded functions in B(T).


1992 ◽  
Vol 44 (6) ◽  
pp. 1303-1316 ◽  
Author(s):  
Washek F. Pfeffer ◽  
Brian S. Thomson

AbstractUsing ideas of McShane ([4, Example 3]), a detailed development of the Riemann integral in a locally compact Hausdorff space X was presented in [1]. There the Riemann integral is derived from a finitely additive volume v defined on a suitable semiring of subsets of X. Vis-à-vis the Riesz representation theorem ([8, Theorem 2.141), the integral generates a Riesz measure v in X, whose relationship to the volume v was carefully investigated in [1, Section 7].In the present paper, we use the same setting as in [1] but produce the measure directly without introducing the Riemann integral. Specifically, we define an outer measure by means of gages and introduce a very intuitive concept of gage measurability that is different from the usual Carathéodory définition. We prove that if the outer measure is σ-finite, the resulting measure space is identical to that defined by means of the Carathéodory technique, and consequently to that of [1, Section 7]. If the outer measure is not σ-finite, we investigate the gage measurability of Carathéodory measurable sets that are σ-finite. Somewhat surprisingly, it turns out that this depends on the axioms of set theory.


1973 ◽  
Vol 16 (3) ◽  
pp. 435-437 ◽  
Author(s):  
C. Eberhart ◽  
J. B. Fugate ◽  
L. Mohler

It is well known (see [3](1)) that no continuum (i.e. compact, connected, Hausdorff space) can be written as a countable disjoint union of its (nonvoid) closed subsets. This result can be generalized in two ways into the setting of locally compact, connected, Hausdorff spaces. Using the one point compactification of a locally compact, connected, Hausdorff space X one can easily show that X cannot be written as a countable disjoint union of compact subsets. If one makes the further assumption that X is locally connected, then one can show that X cannot be written as a countable disjoint union of closed subsets.(2)


1981 ◽  
Vol 34 (2) ◽  
pp. 349-355
Author(s):  
David John

The fact that simple links in locally compact connected metric spaces are nondegenerate was probably first established by C. Kuratowski and G. T. Whyburn in [2], where it is proved for Peano continua. J. L. Kelley in [3] established it for arbitrary metric continua, and A. D. Wallace extended the theorem to Hausdorff continua in [4]. In [1], B. Lehman proved this theorem for locally compact, locally connected Hausdorff spaces. We will show that the locally connected property is not necessary.A continuum is a compact connected Hausdorff space. For any two points a and b of a connected space M, E(a, b) denotes the set of all points of M which separate a from b in M. The interval ab of M is the set E(a, b) ∪ {a, b}.


Sign in / Sign up

Export Citation Format

Share Document