bounded complex
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 11)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 8 (29) ◽  
pp. 349-357
Author(s):  
David Benson ◽  
Jon Carlson

Let k k be a field of characteristic p > 0 p > 0 . For G G an elementary abelian p p -group, there exist collections of permutation modules such that if C ∗ C^* is any exact bounded complex whose terms are sums of copies of modules from the collection, then C ∗ C^* is contractible. A consequence is that if G G is any finite group whose Sylow p p -subgroups are not cyclic or quaternion, and if C ∗ C^* is a bounded exact complex such that each C i C^i is a direct sum of one dimensional modules and projective modules, then C ∗ C^* is contractible.


Author(s):  
Alessandro Cobbe

Let [Formula: see text] be a Galois extension of [Formula: see text]-adic number fields and let [Formula: see text] be a de Rham representation of the absolute Galois group [Formula: see text] of [Formula: see text]. In the case [Formula: see text], the equivariant local [Formula: see text]-constant conjecture describes the compatibility of the equivariant Tamagawa number conjecture with the functional equation of Artin [Formula: see text]-functions and it can be formulated as the vanishing of a certain element [Formula: see text] in [Formula: see text]; a similar approach can be followed also in the case of unramified twists [Formula: see text] of [Formula: see text] (see [W. Bley and A. Cobbe, The equivariant local [Formula: see text]-constant conjecture for unramified twists of [Formula: see text], Acta Arith. 178(4) (2017) 313–383; D. Izychev and O. Venjakob, Equivariant epsilon conjecture for 1-dimensional Lubin–Tate groups, J. Théor. Nr. Bordx. 28(2) (2016) 485–521]). One of the main technical difficulties in the computation of [Formula: see text] arises from the so-called cohomological term [Formula: see text], which requires the construction of a bounded complex [Formula: see text] of cohomologically trivial modules which represents [Formula: see text] for a full [Formula: see text]-stable [Formula: see text]-sublattice [Formula: see text] of [Formula: see text]. In this paper, we generalize the construction of [Formula: see text] in Theorem 2 of [W. Bley and A. Cobbe, The equivariant local [Formula: see text]-constant conjecture for unramified twists of [Formula: see text], Acta Arith. 178(4) (2017) 313–383] to the case of a higher dimensional [Formula: see text].


Author(s):  
Lars Christensen ◽  
Srikanth Iyengar

Foxby defined the (Krull) dimension of a complex of modules over a commutative Noetherian ring in terms of the dimension of its homology modules. In this note it is proved that the dimension of a bounded complex of free modules of finite rank can be computed directly from the matrices representing the differentials of the complex.


2020 ◽  
Vol 102 (3) ◽  
Author(s):  
Milad Hooshyar ◽  
Sara Bonetti ◽  
Arvind Singh ◽  
Efi Foufoula-Georgiou ◽  
Amilcare Porporato

2020 ◽  
Vol 13 (1) ◽  
pp. 75-113 ◽  
Author(s):  
Li Chen ◽  
José María Martell ◽  
Cruz Prisuelos-Arribas

AbstractThe aim of the present paper is to study the boundedness of different conical square functions that arise naturally from second-order divergence form degenerate elliptic operators. More precisely, let {L_{w}=-w^{-1}\mathop{\rm div}(wA\nabla)}, where {w\in A_{2}} and A is an {n\times n} bounded, complex-valued, uniformly elliptic matrix. Cruz-Uribe and Rios solved the {L^{2}(w)}-Kato square root problem obtaining that {\sqrt{L_{w}}} is equivalent to the gradient on {L^{2}(w)}. The same authors in collaboration with the second named author of this paper studied the {L^{p}(w)}-boundedness of operators that are naturally associated with {L_{w}}, such as the functional calculus, Riesz transforms, and vertical square functions. The theory developed admitted also weighted estimates (i.e., estimates in {L^{p}(v\,dw)} for {v\in A_{\infty}(w)}), and in particular a class of “degeneracy” weights w was found in such a way that the classical {L^{2}}-Kato problem can be solved. In this paper, continuing this line of research, and also that originated in some recent results by the second and third named authors of the current paper, we study the boundedness on {L^{p}(w)} and on {L^{p}(v\,dw)}, with {v\in A_{\infty}(w)}, of the conical square functions that one can construct using the heat or Poisson semigroup associated with {L_{w}}. As a consequence of our methods, we find a class of degeneracy weights w for which {L^{2}}-estimates for these conical square functions hold. This opens the door to the study of weighted and unweighted Hardy spaces and of boundary value problems associated with {L_{w}}.


2019 ◽  
Vol 11 (2) ◽  
pp. 493-501
Author(s):  
T.V. Vasylyshyn

It is known that every continuous symmetric (invariant under the composition of its argument with each Lebesgue measurable bijection of $[0,1]$ that preserve the Lebesgue measure of measurable sets) polynomial on the Cartesian power of the complex Banach space $L_\infty$ of all Lebesgue measurable essentially bounded complex-valued functions on $[0,1]$ can be uniquely represented as an algebraic combination, i.e., a linear combination of products, of the so-called elementary symmetric polynomials. Consequently, every continuous complex-valued linear multiplicative functional (character) of an arbitrary topological algebra of the functions on the Cartesian power of $L_\infty,$ which contains the algebra of continuous symmetric polynomials on the Cartesian power of $L_\infty$ as a dense subalgebra, is uniquely determined by its values on elementary symmetric polynomials. Therefore, the problem of the description of the spectrum (the set of all characters) of such an algebra is equivalent to the problem of the description of sets of the above-mentioned values of characters on elementary symmetric polynomials. In this work, the problem of the description of sets of values of characters, which are point-evaluation functionals, on elementary symmetric polynomials on the Cartesian square of $L_\infty$ is completely solved. We show that sets of values of point-evaluation functionals on elementary symmetric polynomials satisfy some natural condition. Also, we show that for any set $c$ of complex numbers, which satisfies the above-mentioned condition, there exists an element $x$ of the Cartesian square of $L_\infty$ such that values of the point-evaluation functional at $x$ on elementary symmetric polynomials coincide with the respective elements of the set $c.$


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 863
Author(s):  
Zhong-Qi Xiang

In the present paper, we obtain some new inequalities for weaving K-frames in subspaces based on the operator methods. The inequalities are associated with a sequence of bounded complex numbers and a parameter λ ∈ R . We also give a double inequality for weaving K-frames with the help of two bounded linear operators induced by K-dual. Facts prove that our results cover those recently obtained on weaving frames due to Li and Leng, and Xiang.


2019 ◽  
Vol 18 (07) ◽  
pp. 1950140 ◽  
Author(s):  
Kamran Divaani-Aazar ◽  
Majid Rahro Zargar

Let [Formula: see text] be a specialization closed subset of Spec R and X a homologically left-bounded complex with finitely generated homologies. We establish Faltings’ Local-global Principle and Annihilator Theorems for the local cohomology modules [Formula: see text] Our versions contain variations of results already known on these theorems.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Han Ju Lee

Let X be a complex Banach space and Cb(Ω:X) be the Banach space of all bounded continuous functions from a Hausdorff space Ω to X, equipped with sup norm. A closed subspace A of Cb(Ω:X) is said to be an X-valued function algebra if it satisfies the following three conditions: (i) A≔{x⁎∘f:f∈A,  x⁎∈X⁎} is a closed subalgebra of Cb(Ω), the Banach space of all bounded complex-valued continuous functions; (ii) ϕ⊗x∈A for all ϕ∈A and x∈X; and (iii) ϕf∈A for every ϕ∈A and for every f∈A. It is shown that k-homogeneous polynomial and analytic numerical index of certain X-valued function algebras are the same as those of X.


Sign in / Sign up

Export Citation Format

Share Document