Structure of Certain Periodic Rings

1985 ◽  
Vol 28 (1) ◽  
pp. 120-123
Author(s):  
Hazar Abu-Khuzam ◽  
Adil Yaqub

AbstractLet R be a periodic ring, N the set of nilpotents, and D the set of right zero divisors of R. Suppose that (i) N is commutative, and (ii) every x in R can be uniquely written in the form x = e + a, where e2 = e and a ∊ N. Then N is an ideal in R and R/N is a Boolean ring. If (i) is satisfied but (ii) is now assumed to hold merely for those elements x ∊ D, and if 1 ∊ R, then N is still an ideal in R and R/N is a subdirect sum of fields. It is further shown that if (i) is satisfied but (ii) is replaced by: "every right zero divisor is either nilpotent or idempotent," and if 1 ∊ R, then N is still an ideal in R and R/N is either a Boolean ring or a field.

Author(s):  
Rasul Mohammadi ◽  
Ahmad Moussavi ◽  
Masoome Zahiri

Let [Formula: see text] be an associative ring with identity. A right [Formula: see text]-module [Formula: see text] is said to have Property ([Formula: see text]), if each finitely generated ideal [Formula: see text] has a nonzero annihilator in [Formula: see text]. Evans [Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155(2) (1971) 505–512.] proved that, over a commutative ring, zero-divisor modules have Property ([Formula: see text]). We study and construct various classes of modules with Property ([Formula: see text]). Following Anderson and Chun [McCoy modules and related modules over commutative rings, Comm. Algebra 45(6) (2017) 2593–2601.], we introduce [Formula: see text]-dual McCoy modules and show that, for every strictly totally ordered monoid [Formula: see text], faithful symmetric modules are [Formula: see text]-dual McCoy. We then use this notion to give a characterization for modules with Property ([Formula: see text]). For a faithful symmetric right [Formula: see text]-module [Formula: see text] and a strictly totally ordered monoid [Formula: see text], it is proved that the right [Formula: see text]-module [Formula: see text] is primal if and only if [Formula: see text] is primal with Property ([Formula: see text]).


2019 ◽  
Vol 19 (08) ◽  
pp. 2050155
Author(s):  
Gaohua Tang ◽  
Guangke Lin ◽  
Yansheng Wu

In this paper, we introduce the concept of the associate class graph of zero-divisors of a commutative ring [Formula: see text], denoted by [Formula: see text]. Some properties of [Formula: see text], including the diameter, the connectivity and the girth are investigated. Utilizing this graph, we present a new class of counterexamples of Beck’s conjecture on the chromatic number of the zero-divisor graph of a commutative ring.


Author(s):  
Yasuyuki Hirano

AbstractA ring R is called a (proper) quotient no-zero-divisor ring if every (proper) nonzero factor ring of R has no zero-divisors. A characterization of a quotient no-zero-divisor ring is given. Using it, the additive groups of quotient no-zero-divisor rings are determined. In addition, for an arbitrary positive integer n, a quotient no-zero-divisor ring with exactly n proper ideals is constructed. Finally, proper quotient no-zero-divisor rings and their additive groups are classified.


ISRN Algebra ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
S. Visweswaran

Let be a commutative ring with identity which has at least two nonzero zero-divisors. Suppose that the complement of the zero-divisor graph of has at least one edge. Under the above assumptions on , it is shown in this paper that the complement of the zero-divisor graph of is complemented if and only if is isomorphic to as rings. Moreover, if is not isomorphic to as rings, then, it is shown that in the complement of the zero-divisor graph of , either no vertex admits a complement or there are exactly two vertices which admit a complement.


2012 ◽  
Vol 55 (1) ◽  
pp. 127-137 ◽  
Author(s):  
John D. LaGrange

AbstractThe zero-divisor graph Γ(R) of a commutative ring R is the graph whose vertices consist of the nonzero zero-divisors of R such that distinct vertices x and y are adjacent if and only if xy = 0. In this paper, a characterization is provided for zero-divisor graphs of Boolean rings. Also, commutative rings R such that Γ(R) is isomorphic to the zero-divisor graph of a direct product of integral domains are classified, as well as those whose zero-divisor graphs are central vertex complete.


1988 ◽  
Vol 11 (2) ◽  
pp. 239-242 ◽  
Author(s):  
Howard E. Bell

Extending a result of Putcha and Yaqub, we prove that a non-nil ring must be finite if it has both ascending chain condition and descending chain condition on non-nil subrings. We also prove that a periodic ring with only finitely many non-central zero divisors must be either finite or commutative.


2012 ◽  
Vol 11 (03) ◽  
pp. 1250055 ◽  
Author(s):  
A. S. KUZMINA

The zero-divisor graph Γ(R) of an associative ring R is the graph whose vertices are all non-zero (one-sided and two-sided) zero-divisors of R, and two distinct vertices x and y are joined by an edge if and only if xy = 0 or yx = 0. [S. P. Redmond, The zero-divisor graph of a noncommutative ring, Int. J. Commut. Rings1(4) (2002) 203–211.] In the present paper, all finite rings with Eulerian zero-divisor graphs are described.


2012 ◽  
Vol 11 (04) ◽  
pp. 1250074 ◽  
Author(s):  
DAVID F. ANDERSON ◽  
AYMAN BADAWI

Let R be a commutative ring with nonzero identity, and let Z(R) be its set of zero-divisors. The total graph of R is the (undirected) graph T(Γ(R)) with vertices all elements of R, and two distinct vertices x and y are adjacent if and only if x + y ∈ Z(R). In this paper, we study the two (induced) subgraphs Z0(Γ(R)) and T0(Γ(R)) of T(Γ(R)), with vertices Z(R)\{0} and R\{0}, respectively. We determine when Z0(Γ(R)) and T0(Γ(R)) are connected and compute their diameter and girth. We also investigate zero-divisor paths and regular paths in T0(Γ(R)).


2015 ◽  
Vol 65 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Amor Haouaoui ◽  
Ali Benhissi

2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Ch. Eslahchi ◽  
A. M. Rahimi

The concept of the zero-divisor graph of a commutative ring has been studied by many authors, and thek-zero-divisor hypergraph of a commutative ring is a nice abstraction of this concept. Though some of the proofs in this paper are long and detailed, any reader familiar with zero-divisors will be able to read through the exposition and find many of the results quite interesting. LetRbe a commutative ring andkan integer strictly larger than2. Ak-uniform hypergraphHk(R)with the vertex setZ(R,k), the set of allk-zero-divisors inR, is associated toR, where eachk-subset ofZ(R,k)that satisfies thek-zero-divisor condition is an edge inHk(R). It is shown that ifRhas two prime idealsP1andP2with zero their only common point, thenHk(R)is a bipartite (2-colorable) hypergraph with partition setsP1−Z′andP2−Z′, whereZ′is the set of all zero divisors ofRwhich are notk-zero-divisors inR. IfRhas a nonzero nilpotent element, then a lower bound for the clique number ofH3(R)is found. Also, we have shown thatH3(R)is connected with diameter at most 4 wheneverx2≠0for all3-zero-divisorsxofR. Finally, it is shown that for any finite nonlocal ringR, the hypergraphH3(R)is complete if and only ifRis isomorphic toZ2×Z2×Z2.


Sign in / Sign up

Export Citation Format

Share Document