ON THE TOTAL GRAPH OF A COMMUTATIVE RING WITHOUT THE ZERO ELEMENT

2012 ◽  
Vol 11 (04) ◽  
pp. 1250074 ◽  
Author(s):  
DAVID F. ANDERSON ◽  
AYMAN BADAWI

Let R be a commutative ring with nonzero identity, and let Z(R) be its set of zero-divisors. The total graph of R is the (undirected) graph T(Γ(R)) with vertices all elements of R, and two distinct vertices x and y are adjacent if and only if x + y ∈ Z(R). In this paper, we study the two (induced) subgraphs Z0(Γ(R)) and T0(Γ(R)) of T(Γ(R)), with vertices Z(R)\{0} and R\{0}, respectively. We determine when Z0(Γ(R)) and T0(Γ(R)) are connected and compute their diameter and girth. We also investigate zero-divisor paths and regular paths in T0(Γ(R)).

2020 ◽  
Vol 27 (03) ◽  
pp. 469-476 ◽  
Author(s):  
A. Cherrabi ◽  
H. Essannouni ◽  
E. Jabbouri ◽  
A. Ouadfel

In this paper, we introduce a new graph whose vertices are the non-zero zero-divisors of a commutative ring R, and for distincts elements x and y in the set Z(R)* of the non-zero zero-divisors of R, x and y are adjacent if and only if xy = 0 or x + y ∈ Z(R). We present some properties and examples of this graph, and we study its relationship with the zero-divisor graph and with a subgraph of the total graph of a commutative ring.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ali Ahmad ◽  
S. C. López

Let R be a commutative ring with nonzero identity and let Z R be its set of zero divisors. The zero-divisor graph of R is the graph Γ R with vertex set V Γ R = Z R ∗ , where Z R ∗ = Z R \ 0 , and edge set E Γ R = x , y :   x ⋅ y = 0 . One of the basic results for these graphs is that Γ R is connected with diameter less than or equal to 3. In this paper, we obtain a few distance-based topological polynomials and indices of zero-divisor graph when the commutative ring is ℤ p 2 q 2 , namely, the Wiener index, the Hosoya polynomial, and the Shultz and the modified Shultz indices and polynomials.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050089
Author(s):  
V. Soleymanivarniab ◽  
A. Tehranian ◽  
R. Nikandish

Let [Formula: see text] be a commutative ring with nonzero identity. The annihilator graph of [Formula: see text], denoted by [Formula: see text], is the (undirected) graph whose vertex set is the set of all nonzero zero-divisors of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper, we study the metric dimension of annihilator graphs associated with commutative rings and some metric dimension formulae for annihilator graphs are given.


2019 ◽  
Vol 18 (10) ◽  
pp. 1950190 ◽  
Author(s):  
Alen Ðurić ◽  
Sara Jevđenić ◽  
Polona Oblak ◽  
Nik Stopar

In this paper, we initiate the study of the total zero-divisor graph over a commutative ring with unity. This graph is constructed by both relations that arise from the zero-divisor graph and from the total graph of a ring and give a joint insight of the structure of zero-divisors in a ring. We characterize Artinian rings with the connected total zero-divisor graphs and give their diameters. Moreover, we compute major characteristics of the total zero-divisor graph of the ring [Formula: see text] of integers modulo [Formula: see text] and prove that the total zero-divisor graphs of [Formula: see text] and [Formula: see text] are isomorphic if and only if [Formula: see text].


2015 ◽  
Vol 07 (01) ◽  
pp. 1550004 ◽  
Author(s):  
Alpesh M. Dhorajia

Let R be a commutative ring and Z(R) be the set of all zero-divisors of R. The total graph of R, denoted by T Γ(R), is the (undirected) graph with vertices set R. For any two distinct elements x, y ∈ R, the vertices x and y are adjacent if and only if x + y ∈ Z(R). In this paper, we obtain certain fundamental properties of the total graph of ℤn × ℤm, where n and m are positive integers. We determine the clique number and independent number of the total graph T Γ(ℤn × ℤm).


2020 ◽  
Vol 107 (121) ◽  
pp. 85-92
Author(s):  
Mitra Jalali ◽  
Reza Nikandish ◽  
Abolfazl Tehranian

Let R be a commutative ring with identity, and let Z(R) be the set of zero-divisors of R. The total graph of R is the graph T(?(R)) whose vertices are all elements of R, and two distinct vertices x and y are adjacent if and only if x + y ? Z(R). We investigate the perfectness of the graphs Z0(?(R)), T0(?(R)) and T(?(R)), where Z0(?(R)) and T0(?(R)) are (induced) subgraphs of T(?(R)) on Z(R)* = Z(R) \ {0} and R* = R \ {0}, respectively.


2011 ◽  
Vol 03 (04) ◽  
pp. 413-421 ◽  
Author(s):  
T. TAMIZH CHELVAM ◽  
T. ASIR

For a commutative ring R, let Z(R) be its set of zero-divisors. The total graph of R, denoted by TΓ(R), is the undirected graph with vertex set R, and for distinct x, y ∈ R, the vertices x and y are adjacent if and only if x + y ∈ Z(R). Tamizh Chelvam and Asir studied about the domination in the total graph of a commutative ring R. In particular, it was proved that the domination number γ(TΓ(ℤn)) = p1 where p1 is the smallest prime divisor of n. In this paper, we characterize all the γ-sets in TΓ(ℤn). Also, we obtain the values of other domination parameters like independent, total and perfect domination numbers of the total graph on ℤn.


2014 ◽  
Vol 13 (07) ◽  
pp. 1450047 ◽  
Author(s):  
S. Pirzada ◽  
Rameez Raja ◽  
Shane Redmond

For a graph G(V, E) with order n ≥ 2, the locating code of a vertex v is a finite vector representing distances of v with respect to vertices of some ordered subset W of V(G). The set W is a locating set of G(V, E) if distinct vertices have distinct codes. A locating set containing a minimum number of vertices is a minimum locating set for G(V, E). The locating number denoted by loc (G) is the number of vertices in the minimum locating set. Let R be a commutative ring with identity 1 ≠ 0, the zero-divisor graph denoted by Γ(R), is the (undirected) graph whose vertices are the nonzero zero-divisors of R with two distinct vertices joined by an edge when the product of vertices is zero. We introduce and investigate locating numbers in zero-divisor graphs of a commutative ring R. We then extend our definition to study and characterize the locating numbers of an ideal based zero-divisor graph of a commutative ring R.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


2019 ◽  
Vol 26 (03) ◽  
pp. 519-528
Author(s):  
T. Asir ◽  
K. Mano

Let R be a commutative ring with non-zero identity and I its proper ideal. The total graph of R with respect to I, denoted by T (ΓI (R)), is the undirected graph with all elements of R as vertices, and where distinct vertices x and y are adjacent if and only if [Formula: see text]. In this paper, some bounds for the genus of T(ΓI(R)) are obtained. We improve and generalize some results for the total graphs of commutative rings. In addition, we obtain an isomorphism relation between two ideal based total graphs.


Sign in / Sign up

Export Citation Format

Share Document