The Contragredient Isotypic Component of the Regular Representation of Pseudoreflection Groups

1995 ◽  
Vol 38 (2) ◽  
pp. 182-186
Author(s):  
F. Destrempes ◽  
A. Pianzola

AbstractFor the regular representation of a pseudoreflection group G we characterize the occurrences of the contragredient representation as the gradient spaces of a set of Chevalley generators of the invariants of G.

1991 ◽  
Vol 43 (6) ◽  
pp. 1243-1262 ◽  
Author(s):  
John E. Gilbert

For any group K and finite-dimensional (right) K-module V let be the right regular representation of K on the algebra of polynomial functions on V. An Isotypic Component of is the sum of all k-submodules of on which π restricts to an irreducible representation can then be written as f = ΣƬ ƒƬ with ƒƬ in .


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Jason Bandlow ◽  
Gregg Musiker

International audience For $m$ a non-negative integer and $G$ a Coxeter group, we denote by $\mathbf{QI_m}(G)$ the ring of $m$-quasiinvariants of $G$, as defined by Chalykh, Feigin, and Veselov. These form a nested series of rings, with $\mathbf{QI_0}(G)$ the whole polynomial ring, and the limit $\mathbf{QI}_{\infty}(G)$ the usual ring of invariants. Remarkably, the ring $\mathbf{QI_m}(G)$ is freely generated over the ideal generated by the invariants of $G$ without constant term, and the quotient is isomorphic to the left regular representation of $G$. However, even in the case of the symmetric group, no basis for $\mathbf{QI_m}(G)$ is known. We provide a new description of $\mathbf{QI_m}(S_n)$, and use this to give a basis for the isotypic component of $\mathbf{QI_m}(S_n)$ indexed by the shape $[n-1,1]$. Pour $m$ un entier positif ou nul et $G$ un groupe de Coxeter, nous notons $\mathbf{QI_m}(G)$ l'anneau des quasiinvariants définis par Chalykh, Feigin et Veselov. On obtient ainsi une série d'anneaux emboités, $\mathbf{QI_0}(G)$ étant l'anneau des polynômes, et la limite $\mathbf{QI}_{\infty}(G)$ l'anneau des invariants usuels. Il est remarquable que l'anneau $\mathbf{QI_m}(G)$ est librement généré sur l'idéal engendré par les invariants de $G$ sans terme constant, et le quotient est isomorphe à la représentation régulière à gauche de $G$. Cependant, même dans le cas du groupe symétrique, aucune base de $\mathbf{QI_m}(G)$ n'est connue. Nous donnons une nouvelle description de $\mathbf{QI_m}(G)$ et l'utilisons pour obtenir une base du composant isotypique de $\mathbf{QI_m}(S_n)$ indexée par la partition $(n-1,1)$.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550064
Author(s):  
Bachir Bekka

Let Γ be a discrete group and 𝒩 a finite factor, and assume that both have Kazhdan's Property (T). For p ∈ [1, +∞), p ≠ 2, let π : Γ →O(Lp(𝒩)) be a homomorphism to the group O(Lp(𝒩)) of linear bijective isometries of the Lp-space of 𝒩. There are two actions πl and πr of a finite index subgroup Γ+ of Γ by automorphisms of 𝒩 associated to π and given by πl(g)x = (π(g) 1)*π(g)(x) and πr(g)x = π(g)(x)(π(g) 1)* for g ∈ Γ+ and x ∈ 𝒩. Assume that πl and πr are ergodic. We prove that π is locally rigid, that is, the orbit of π under O(Lp(𝒩)) is open in Hom (Γ, O(Lp(𝒩))). As a corollary, we obtain that, if moreover Γ is an ICC group, then the embedding g ↦ Ad (λ(g)) is locally rigid in O(Lp(𝒩(Γ))), where 𝒩(Γ) is the von Neumann algebra generated by the left regular representation λ of Γ.


10.53733/90 ◽  
2021 ◽  
Vol 52 ◽  
pp. 109-143
Author(s):  
Astrid An Huef ◽  
Marcelo Laca ◽  
Iain Raeburn

We study the Toeplitz $C^*$-algebra generated by the right-regular representation of the semigroup ${\mathbb N \rtimes \mathbb N^\times}$, which we call the right Toeplitz algebra. We analyse its structure by studying three distinguished quotients. We show that the multiplicative boundary quotient is isomorphic to a crossed product of the Toeplitz algebra of the additive rationals by an action of the multiplicative rationals, and study its ideal structure. The Crisp--Laca boundary quotient is isomorphic to the $C^*$-algebra of the group ${\mathbb Q_+^\times}\!\! \ltimes \mathbb Q$. There is a natural dynamics on the right Toeplitz algebra and all its KMS states factor through the additive boundary quotient. We describe the KMS simplex for inverse temperatures greater than one.


Author(s):  
PIOTR ŚNIADY

We study the asymptotics of the reducible representations of the wreath products G≀Sq = Gq ⋊ Sq for large q, where G is a fixed finite group and Sq is the symmetric group in q elements; in particular for G = ℤ/2ℤ we recover the hyperoctahedral groups. We decompose such a reducible representation of G≀Sq as a sum of irreducible components (or, equivalently, as a collection of tuples of Young diagrams) and we ask what is the character of a randomly chosen component (or, what are the shapes of Young diagrams in a randomly chosen tuple). Our main result is that for a large class of representations, the fluctuations of characters (and fluctuations of the shape of the Young diagrams) are asymptotically Gaussian. The considered class consists of the representations for which the characters asymptotically almost factorize and it includes, among others, the left regular representation therefore we prove the analogue of Kerov's central limit theorem for wreath products.


Sign in / Sign up

Export Citation Format

Share Document