On Positive Integer Solutions of the Equation xy + yz + xz = n

1996 ◽  
Vol 39 (2) ◽  
pp. 199-202 ◽  
Author(s):  
Al-Zaid Hassan ◽  
B. Brindza ◽  
Á. Pintér

AbstractAs it had been recognized by Liouville, Hermite, Mordell and others, the number of non-negative integer solutions of the equation in the title is strongly related to the class number of quadratic forms with discriminant —n. The purpose of this note is to point out a deeper relation which makes it possible to derive a reasonable upper bound for the number of solutions.

Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn ≤ f (2n). We prove:   (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, then M is computable.


Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn ≤ f (2n). We prove:   (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, then M is computable.


2018 ◽  
Vol 8 (1) ◽  
pp. 109-114
Author(s):  
Apoloniusz Tyszka

Abstract We define a computable function f from positive integers to positive integers. We formulate a hypothesis which states that if a system S of equations of the forms xi· xj = xk and xi + 1 = xi has only finitely many solutions in non-negative integers x1, . . . , xi, then the solutions of S are bounded from above by f (2n). We prove the following: (1) the hypothesis implies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (3) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (4) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, thenMis computable.


2011 ◽  
Vol 07 (06) ◽  
pp. 1603-1614 ◽  
Author(s):  
BYEONG-KWEON OH

For a positive integer d and a non-negative integer a, let Sd,a be the set of all integers of the form dn + a for any non-negative integer n. A (positive definite integral) quadratic form f is said to be Sd,a-universal if it represents all integers in the set Sd, a, and is said to be Sd,a-regular if it represents all integers in the non-empty set Sd,a ∩ Q((f)), where Q(gen(f)) is the set of all integers that are represented by the genus of f. In this paper, we prove that there is a polynomial U(x,y) ∈ ℚ[x,y] (R(x,y) ∈ ℚ[x,y]) such that the discriminant df for any Sd,a-universal (Sd,a-regular) ternary quadratic forms is bounded by U(d,a) (respectively, R(d,a)).


2010 ◽  
Vol 81 (2) ◽  
pp. 177-185 ◽  
Author(s):  
BO HE ◽  
ALAIN TOGBÉ

AbstractLet a, b, c, x and y be positive integers. In this paper we sharpen a result of Le by showing that the Diophantine equation has at most two positive integer solutions (m,n) satisfying min (m,n)>1.


Author(s):  
Xu Yifan ◽  
Shen Zhongyan

By using the properties of Euler function, an upper bound of solutions of Euler function equation  is given, where  is a positive integer. By using the classification discussion and the upper bound we obtained, all positive integer solutions of the generalized Euler function equation  are given, where is the number of distinct prime factors of n.


2015 ◽  
Vol 11 (04) ◽  
pp. 1107-1114 ◽  
Author(s):  
Hai Yang ◽  
Ruiqin Fu

Let D1, D2, D, k, λ be fixed integers such that D1 ≥ 1, D2 ≥ 1, gcd (D1, D2) = 1, D = D1D2 is not a square, ∣k∣ > 1, gcd (D, k) = 1 and λ = 1 or 4 according as 2 ∤ k or not. In this paper, we prove that every solution class S(l) of the equation D1x2-D2y2 = λkz, gcd (x, y) = 1, z > 0, has a unique positive integer solution [Formula: see text] satisfying [Formula: see text] and [Formula: see text], where z runs over all integer solutions (x,y,z) of S(l),(u1,v1) is the fundamental solution of Pell's equation u2 - Dv2 = 1. This result corrects and improves some previous results given by M. H. Le.


2011 ◽  
Vol 07 (07) ◽  
pp. 1835-1839 ◽  
Author(s):  
ANA ZUMALACÁRREGUI

Let Q(x, y) be a quadratic form with discriminant D ≠ 0. We obtain non-trivial upper bound estimates for the number of solutions of the congruence Q(x, y) ≡ λ ( mod p), where p is a prime and x, y lie in certain intervals of length M, under the assumption that Q(x, y) - λ is an absolutely irreducible polynomial modulo p. In particular, we prove that the number of solutions to this congruence is Mo(1) when M ≪ p1/4. These estimates generalize a previous result by Cilleruelo and Garaev on the particular congruence xy ≡ λ( mod p).


2018 ◽  
Vol 14 (05) ◽  
pp. 1223-1228
Author(s):  
Hai Yang ◽  
Ruiqin Fu

Let [Formula: see text] be a positive integer which is not a square. Further, let [Formula: see text] be the least positive integer solution of the Pell equation [Formula: see text], and let [Formula: see text] denote the class number of binary quadratic primitive forms of discriminant [Formula: see text]. If [Formula: see text] satisfies [Formula: see text] and [Formula: see text], then [Formula: see text] is called an exceptional number. In this paper, under the assumption that there have no exceptional numbers, we prove that the equation [Formula: see text] has no positive integer solutions [Formula: see text] satisfy [Formula: see text] and [Formula: see text].


2020 ◽  
Vol 55 (2) ◽  
pp. 195-201
Author(s):  
Maohua Le ◽  
◽  
Gökhan Soydan ◽  

Let A, B be positive integers such that min{A,B}>1, gcd(A,B) = 1 and 2|B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A >B3/8, then the equation (A2 n)x + (B2 n)y = ((A2 + B2)n)z has no positive integer solutions (x,y,z) with x > z > y; if B>A3/6, then it has no solutions (x,y,z) with y>z>x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B ≡ 2 (mod 4) and A >B3/8, then this equation has only the positive integer solution (x,y,z)=(1,1,1).


Sign in / Sign up

Export Citation Format

Share Document