scholarly journals Equivariant cyclic homology for quantum groups

2009 ◽  
pp. 151-179 ◽  
Author(s):  
Christian Voigt
Author(s):  
Christian Voigt

AbstractWe construct a duality isomorphism in equivariant periodic cyclic homology analogous to Baaj-Skandalis duality in equivariant Kasparov theory. As a consequence we obtain general versions of the Green-Julg theorem and the dual Green-Julg theorem in periodic cyclic theory.Throughout we work within the framework of bornological quantum groups, thus in particular incorporating at the same time actions of arbitrary classical Lie groups as well as actions of compact or discrete quantum groups. An important ingredient in the construction of our duality isomorphism is the notion of a modular pair for a bornological quantum group, closely related to the concept introduced by Connes and Moscovici in their work on cyclic cohomology for Hopf algebras.


1991 ◽  
Vol 140 (3) ◽  
pp. 481-521 ◽  
Author(s):  
Ping Feng ◽  
Boris Tsygan

Author(s):  
Tom Hadfield ◽  
Ulrich Krähmer

AbstractWe study braided Hochschild and cyclic homology of ribbon algebras in braided monoidal categories, as introduced by Baez and by Akrami and Majid. We compute this invariant for several examples coming from quantum groups and braided groups.


2020 ◽  
Vol 2020 (769) ◽  
pp. 87-119
Author(s):  
Sabin Cautis ◽  
Aaron D. Lauda ◽  
Joshua Sussan

AbstractRickard complexes in the context of categorified quantum groups can be used to construct braid group actions. We define and study certain natural deformations of these complexes which we call curved Rickard complexes. One application is to obtain deformations of link homologies which generalize those of Batson–Seed [3] [J. Batson and C. Seed, A link-splitting spectral sequence in Khovanov homology, Duke Math. J. 164 2015, 5, 801–841] and Gorsky–Hogancamp [E. Gorsky and M. Hogancamp, Hilbert schemes and y-ification of Khovanov–Rozansky homology, preprint 2017] to arbitrary representations/partitions. Another is to relate the deformed homology defined algebro-geometrically in [S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves IV, colored links, Quantum Topol. 8 2017, 2, 381–411] to categorified quantum groups (this was the original motivation for this paper).


Author(s):  
Piotr M. Hajac ◽  
Tomasz Maszczyk

AbstractViewing the space of cotraces in the structural coalgebra of a principal coaction as a noncommutative counterpart of the classical Cartan model, we construct the cyclic-homology Chern–Weil homomorphism. To realize the thus constructed Chern–Weil homomorphism as a Cartan model of the homomorphism tautologically induced by the classifying map on cohomology, we replace the unital subalgebra of coaction-invariants by its natural H-unital nilpotent extension (row extension). Although the row-extension algebra provides a drastically different model of the cyclic object, we prove that, for any row extension of any unital algebra over a commutative ring, the row-extension Hochschild complex and the usual Hochschild complex are chain homotopy equivalent. It is the discovery of an explicit homotopy formula that allows us to improve the homological quasi-isomorphism arguments of Loday and Wodzicki. We work with families of principal coactions, and instantiate our noncommutative Chern–Weil theory by computing the cotrace space and analyzing a dimension-drop-like effect in the spirit of Feng and Tsygan for the quantum-deformation family of the standard quantum Hopf fibrations.


1990 ◽  
Vol 87 (1) ◽  
pp. 478-481 ◽  
Author(s):  
M. Gerstenhaber ◽  
S. D. Schack
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document