khovanov homology
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 40)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Giovanna Le Gros

<p>The Khovanov homology is a knot invariant which first appeared in Khovanov's original paper of 1999, titled ``a categorification of the Jones polynomial.'' This thesis aims to give an exposition of the Khovanov homology, including a complete background to the techniques used. We start with basic knot theory, including a definition of the Jones polynomial via the Kauffman bracket. Next, we cover some definitions and constructions in homological algebra which we use in the description of our title. Next we define the Khovanov homology in an analogous way to the Kauffman bracket, using only the algebraic techniques of the previous chapter, followed closely by a proof that the Khovanov homology is a knot invariant. After this, we prove an isomorphism of categories between TQFTs and Frobenius objects, which finally, in the last chapter, we put in the context of the Khovanov homology. After this application, we discuss some topological techniques in the context of the Khovanov homology.</p>


2021 ◽  
Author(s):  
◽  
Giovanna Le Gros

<p>The Khovanov homology is a knot invariant which first appeared in Khovanov's original paper of 1999, titled ``a categorification of the Jones polynomial.'' This thesis aims to give an exposition of the Khovanov homology, including a complete background to the techniques used. We start with basic knot theory, including a definition of the Jones polynomial via the Kauffman bracket. Next, we cover some definitions and constructions in homological algebra which we use in the description of our title. Next we define the Khovanov homology in an analogous way to the Kauffman bracket, using only the algebraic techniques of the previous chapter, followed closely by a proof that the Khovanov homology is a knot invariant. After this, we prove an isomorphism of categories between TQFTs and Frobenius objects, which finally, in the last chapter, we put in the context of the Khovanov homology. After this application, we discuss some topological techniques in the context of the Khovanov homology.</p>


Author(s):  
Louis H. Kauffman ◽  
Igor Mikhailovich Nikonov ◽  
Eiji Ogasa

We discuss links in thickened surfaces. We define the Khovanov–Lipshitz–Sarkar stable homotopy type and the Steenrod square for the homotopical Khovanov homology of links in thickened surfaces with genus [Formula: see text]. A surface means a closed oriented surface unless otherwise stated. Of course, a surface may or may not be the sphere. A thickened surface means a product manifold of a surface and the interval. A link in a thickened surface (respectively, a 3-manifold) means a submanifold of a thickened surface (respectively, a 3-manifold) which is diffeomorphic to a disjoint collection of circles. Our Khovanov–Lipshitz–Sarkar stable homotopy type and our Steenrod square of links in thickened surfaces with genus [Formula: see text] are stronger than the homotopical Khovanov homology of links in thickened surfaces with genus [Formula: see text]. It is the first meaningful Khovanov–Lipshitz–Sarkar stable homotopy type of links in 3-manifolds other than the 3-sphere. We point out that our theory has a different feature in the torus case.


2021 ◽  
Vol 25 (4) ◽  
pp. 1861-1917
Author(s):  
Andrew Lobb ◽  
Liam Watson
Keyword(s):  

2021 ◽  
Vol 157 (4) ◽  
pp. 710-769
Author(s):  
Rostislav Akhmechet ◽  
Vyacheslav Krushkal ◽  
Michael Willis

We construct a stable homotopy refinement of quantum annular homology, a link homology theory introduced by Beliakova, Putyra and Wehrli. For each $r\geq ~2$ we associate to an annular link $L$ a naive $\mathbb {Z}/r\mathbb {Z}$ -equivariant spectrum whose cohomology is isomorphic to the quantum annular homology of $L$ as modules over $\mathbb {Z}[\mathbb {Z}/r\mathbb {Z}]$ . The construction relies on an equivariant version of the Burnside category approach of Lawson, Lipshitz and Sarkar. The quotient under the cyclic group action is shown to recover the stable homotopy refinement of annular Khovanov homology. We study spectrum level lifts of structural properties of quantum annular homology.


2021 ◽  
Vol 12 (1) ◽  
pp. 129-209
Author(s):  
Hoel Queffelec ◽  
Paul Wedrich

2021 ◽  
Vol 157 (3) ◽  
pp. 484-528
Author(s):  
P. B. Kronheimer ◽  
T. S. Mrowka

A spectral sequence is established whose $E_{2}$ page is Bar-Natan's variant of Khovanov homology and which abuts to a deformation of instanton homology for knots and links. This spectral sequence arises as a specialization of a spectral sequence whose $E_{2}$ page is a characteristic-2 version of $F_{5}$ homology in Khovanov's classification.


Author(s):  
Maciej Borodzik ◽  
Wojciech Politarczyk ◽  
Marithania Silvero

AbstractGiven an m-periodic link $$L\subset S^3$$ L ⊂ S 3 , we show that the Khovanov spectrum $$\mathcal {X}_L$$ X L constructed by Lipshitz and Sarkar admits a group action. We relate the Borel cohomology of $$\mathcal {X}_L$$ X L to the equivariant Khovanov homology of L constructed by the second author. The action of Steenrod algebra on the cohomology of $$\mathcal {X}_L$$ X L gives an extra structure of the periodic link. Another consequence of our construction is an alternative proof of the localization formula for Khovanov homology, obtained first by Stoffregen and Zhang. By applying the Dwyer–Wilkerson theorem we express Khovanov homology of the quotient link in terms of equivariant Khovanov homology of the original link.


Sign in / Sign up

Export Citation Format

Share Document