scholarly journals Elliptic fibrations on K3 surfaces with a non-symplectic involution fixing rational curves and a curve of positive genus

2020 ◽  
Vol 36 (4) ◽  
pp. 1167-1206
Author(s):  
Alice Garbagnati ◽  
Cecília Salgado
2013 ◽  
Vol 57 (1) ◽  
pp. 253-267 ◽  
Author(s):  
Viacheslav V. Nikulin

AbstractThis paper consists mainly of a review and applications of our old results relating to the title. We discuss how many elliptic fibrations and elliptic fibrations with infinite automorphism groups (or Mordell–Weil groups) an algebraic K3 surface over an algebraically closed field can have. As examples of applications of the same ideas, we also consider K3 surfaces with exotic structures: with a finite number of non-singular rational curves, with a finite number of Enriques involutions, and with naturally arithmetic automorphism groups.


Author(s):  
Alice Garbagnati

Abstract We discuss the birational geometry and the Kodaira dimension of certain varieties previously constructed by Schreieder, proving that in any dimension they admit an elliptic fibration and they are not of general type. The $l$-dimensional variety $Y_{(n)}^{(l)}$, which is the quotient of the product of a certain curve $C_{(n)}$ by itself $l$ times by a group $G\simeq \left ({\mathbb{Z}}/n{\mathbb{Z}}\right )^{l-1}$ of automorphisms, was constructed by Schreieder to obtain varieties with prescribed Hodge numbers. If $n=3^c$ Schreieder constructed an explicit smooth birational model of it, and Flapan proved that the Kodaira dimension of this smooth model is 1, if $c>1$; if $l=2$ it is a modular elliptic surface; if $l=3$ it admits a fibration in K3 surfaces. In this paper we generalize these results: without any assumption on $n$ and $l$ we prove that $Y_{(n)}^{(l)}$ admits many elliptic fibrations and its Kodaira dimension is at most 1. Moreover, if $l=2$, its minimal resolution is a modular elliptic surface, obtained by a base change of order $n$ on a specific extremal rational elliptic surface; if $l\geq 3$ it has a birational model that admits a fibration in K3 surfaces and a fibration in $(l-1)$-dimensional varieties of Kodaira dimension at most 0.


2020 ◽  
Vol 2020 (762) ◽  
pp. 167-194
Author(s):  
Salim Tayou

AbstractWe prove the equidistribution of the Hodge locus for certain non-isotrivial, polarized variations of Hodge structure of weight 2 with {h^{2,0}=1} over complex, quasi-projective curves. Given some norm condition, we also give an asymptotic on the growth of the Hodge locus. In particular, this implies the equidistribution of elliptic fibrations in quasi-polarized, non-isotrivial families of K3 surfaces.


2012 ◽  
Vol 356 (1) ◽  
pp. 331-354 ◽  
Author(s):  
Xi Chen ◽  
James D. Lewis
Keyword(s):  

Author(s):  
Julian Lawrence Demeio

Abstract For a number field $K$, an algebraic variety $X/K$ is said to have the Hilbert Property if $X(K)$ is not thin. We are going to describe some examples of algebraic varieties, for which the Hilbert Property is a new result. The first class of examples is that of smooth cubic hypersurfaces with a $K$-rational point in ${\mathbb{P}}_n/K$, for $n \geq 3$. These fall in the class of unirational varieties, for which the Hilbert Property was conjectured by Colliot-Thélène and Sansuc. We then provide a sufficient condition for which a surface endowed with multiple elliptic fibrations has the Hilbert Property. As an application, we prove the Hilbert Property of a class of K3 surfaces, and some Kummer surfaces.


Sign in / Sign up

Export Citation Format

Share Document