Vibration Control of an Offshore Wind Turbine with a Tuned Liquid Column Damper

Author(s):  
S. Colwell ◽  
B. Basu
2015 ◽  
Author(s):  
Ayaz Khan

For a direct unobstructed view over the ship bow, elevation of the bridge on top of deckhouse is required. With this deckhouse mounted over the engine room cavity, adequate structural stiffness is difficult to incorporate. The present study is intended to carry out a vibration control analysis using tuned liquid column damper (TLCD) which can be used against fore and aft vibration of superstructure. First stage analysis is done for the validation of proposed design of TLCD followed by comparative harmonic analysis of superstructure with and without TLCD, using finite element method.


Author(s):  
Chan Hui Lee ◽  
Heui Won Kim ◽  
Won Ho Joo

The offshore fixed platforms are confronted with greater wind and wave forces as their installation site moves toward the deep sea, so it is definitely necessary to reduce the low frequency vibration of structures for the safety and comfort of crews. The dynamic dampers are generally used to reduce vibration of structures. Especially, the tuned liquid column damper (TLCD) has been applied to reduce the low frequency vibration of onshore tall buildings. In this paper, the design procedure of TLCD is proposed to control the low frequency vibration of fixed platforms through the simulation and experiment with a small-scale model. The vibration control target is the surge motion of fixed platforms and the major design variables of TLCD are mass and damping ratios. The optimized design variables of TLCD are determined from the calculation of the amplification factor. In the experiment, the effects of mass and damping ratios are considered by changing the breadth of column, the opening ratio and number of the orifices. The results of experiment are found to well agree with the simulation. The 83% of structure vibration level can be reduced by applying the optimized TLCD.


Author(s):  
Milad Shadman ◽  
Abbas Akbarpour

Among the floating wind turbine support concepts for carrying large-scale wind turbines, the barge type is more simple and inexpensive to install. The ability to install barge type platforms over a broad range of sea depths increases the number of site options suitable for its installation. Although there are several advantages related to barge type platforms, its significant angular motions which induce dynamic loads in the rotor, tower and drivetrain, hinder its commercial development. In this study, a single degree-of-freedom TLCD (Tuned Liquid Column Damper), which is placed on the turbine’s tower, is incorporated into a modified version of the aero-elastic code FAST. The response of a floating wind turbine with a barge type support controlled by a TLCD subjected to couple hydrodynamic and aerodynamic loads is investigated. The solution of multi degree-of-freedom floating wind turbine coupled with a TLCD dynamic system is done by a sequential method. In this method, two coupled systems of nonlinear differential equations are solved separately by a modified version of FAST in which an added module solves the nonlinear differential equation of motion of the TLCD. The results are compared to the baseline system. The results indicate that this passive type control approach can be used to improve the structural response of floating wind turbines.


Sign in / Sign up

Export Citation Format

Share Document