scholarly journals Model-Checking an Alternating-time Temporal Logic with Knowledge, Imperfect Information, Perfect Recall and Communicating Coalitions

2010 ◽  
Vol 25 ◽  
pp. 103-117 ◽  
Author(s):  
Cătălin Dima ◽  
Constantin Enea ◽  
Dimitar Guelev
2019 ◽  
Vol 66 ◽  
pp. 197-223
Author(s):  
Michal Jozef Knapik ◽  
Etienne Andre ◽  
Laure Petrucci ◽  
Wojciech Jamroga ◽  
Wojciech Penczek

In this paper we investigate the Timed Alternating-Time Temporal Logic (TATL), a discrete-time extension of ATL. In particular, we propose, systematize, and further study semantic variants of TATL, based on different notions of a strategy. The notions are derived from different assumptions about the agents’ memory and observational capabilities, and range from timed perfect recall to untimed memoryless plans. We also introduce a new semantics based on counting the number of visits to locations during the play. We show that all the semantics, except for the untimed memoryless one, are equivalent when punctuality constraints are not allowed in the formulae. In fact, abilities in all those notions of a strategy collapse to the “counting” semantics with only two actions allowed per location. On the other hand, this simple pattern does not extend to the full TATL. As a consequence, we establish a hierarchy of TATL semantics, based on the expressivity of the underlying strategies, and we show when some of the semantics coincide. In particular, we prove that more compact representations are possible for a reasonable subset of TATL specifications, which should improve the efficiency of model checking and strategy synthesis.


2011 ◽  
Vol 21 (1) ◽  
pp. 93-131 ◽  
Author(s):  
Dimitar P. Guelev ◽  
Catalin Dima ◽  
Constantin Enea

Author(s):  
Francesco Belardinelli ◽  
Alessio Lomuscio ◽  
Vadim Malvone

We investigate the verification of Multi-agent Systems against strategic properties expressed in Alternating-time Temporal Logic under the assumptions of imperfect information and perfect recall. To this end, we develop a three-valued semantics for concurrent game structures upon which we define an abstraction method. We prove that concurrent game structures with imperfect information admit perfect information abstractions that preserve three-valued satisfaction. Further, we present a refinement procedure to deal with cases where the value of a specification is undefined. We illustrate the overall procedure in a variant of the Train Gate Controller scenario under imperfect information and perfect recall.


Author(s):  
Francesco Belardinelli ◽  
Alessio Lomuscio ◽  
Aniello Murano ◽  
Sasha Rubin

We study a class of synchronous, perfect-recall multi-agent systemswith imperfect information and broadcasting (i.e., fully observableactions). We define an epistemic extension of strategy logic withincomplete information and the assumption of uniform and coherentstrategies. In this setting, we prove that the model checking problem,and thus rational synthesis, is decidable with non-elementarycomplexity. We exemplify the applicability of the framework on arational secret-sharing scenario.


Author(s):  
Francesco Belardinelli ◽  
Alessio Lomuscio ◽  
Aniello Murano ◽  
Sasha Rubin

We develop a logic-based technique to analyse finite interactions in multi-agent systems. We introduce a semantics for Alternating-time Temporal Logic (for both perfect and imperfect recall) and its branching-time fragments in which paths are finite instead of infinite.  We study validities of these logics and present optimal algorithms for their model-checking problems in the perfect recall case.


Sign in / Sign up

Export Citation Format

Share Document