A Priori Error Estimate of Splitting Positive Definite Mixed Finite Element Method for Parabolic Optimal Control Problems

2016 ◽  
Vol 9 (2) ◽  
pp. 215-238 ◽  
Author(s):  
Hongfei Fu ◽  
Hongxing Rui ◽  
Jiansong Zhang ◽  
Hui Guo

AbstractIn this paper, we propose a splitting positive definite mixed finite element method for the approximation of convex optimal control problems governed by linear parabolic equations, where the primal state variable y and its flux σ are approximated simultaneously. By using the first order necessary and sufficient optimality conditions for the optimization problem, we derive another pair of adjoint state variables z and ω, and also a variational inequality for the control variable u is derived. As we can see the two resulting systems for the unknown state variable y and its flux σ are splitting, and both symmetric and positive definite. Besides, the corresponding adjoint states z and ω are also decoupled, and they both lead to symmetric and positive definite linear systems. We give some a priori error estimates for the discretization of the states, adjoint states and control, where Ladyzhenkaya-Babuska-Brezzi consistency condition is not necessary for the approximation of the state variable y and its flux σ. Finally, numerical experiments are given to show the efficiency and reliability of the splitting positive definite mixed finite element method.

2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Yang Liu ◽  
Hong Li ◽  
Jinfeng Wang ◽  
Wei Gao

A new positive definite expanded mixed finite element method is proposed for parabolic partial integrodifferential equations. Compared to expanded mixed scheme, the new expanded mixed element system is symmetric positive definite and both the gradient equation and the flux equation are separated from its scalar unknown equation. The existence and uniqueness for semidiscrete scheme are proved and error estimates are derived for both semidiscrete and fully discrete schemes. Finally, some numerical results are provided to confirm our theoretical analysis.


2005 ◽  
Vol 72 (5) ◽  
pp. 711-720 ◽  
Author(s):  
Arif Masud ◽  
Kaiming Xia

We present a new multiscale/stabilized finite element method for compressible and incompressible elasticity. The multiscale method arises from a decomposition of the displacement field into coarse (resolved) and fine (unresolved) scales. The resulting stabilized-mixed form consistently represents the fine computational scales in the solution and thus possesses higher coarse mesh accuracy. The ensuing finite element formulation allows arbitrary combinations of interpolation functions for the displacement and stress fields. Specifically, equal order interpolations that are easy to implement but violate the celebrated Babushka-Brezzi inf-sup condition, become stable and convergent. Since the proposed framework is based on sound variational foundations, it provides a basis for a priori error analysis of the system. Numerical simulations pass various element patch tests and confirm optimal convergence in the norms considered.


Sign in / Sign up

Export Citation Format

Share Document