scholarly journals Analytical and Approximate Solutions to the Fee Vibration of Strongly Nonlinear Oscillators

2013 ◽  
Vol 05 (10) ◽  
pp. 388-392
Author(s):  
Taher A. Nofal ◽  
Gamal M. Ismail ◽  
Amal Ali M. Mady ◽  
Sayed Abdel-Khalek
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Alex Elías-Zúñiga ◽  
Oscar Martínez-Romero

We introduce a nonlinearization procedure that replaces the system potential energy by an equivalent representation form that is used to derive analytical solutions of strongly nonlinear conservative oscillators. We illustrate the applicability of this method by finding the approximate solutions of two strongly nonlinear oscillators and show that this procedure provides solutions that follow well the numerical integration solutions of the corresponding equations of motion.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Vasile Marinca ◽  
Nicolae Herişanu

We introduce a new method, namely, the Optimal Iteration Perturbation Method (OIPM), to solve nonlinear differential equations of oscillators with cubic and harmonic restoring force. We illustrate that OIPM is very effective and convenient and does not require linearization or small perturbation. Contrary to conventional methods, in OIPM, only one iteration leads to high accuracy of the solutions. The main advantage of this approach consists in that it provides a convenient way to control the convergence of approximate solutions in a very rigorous way and allows adjustment of convergence regions where necessary. A very good agreement was found between approximate and numerical solutions, which prove that OIPM is very efficient and accurate.


2017 ◽  
Vol 72 (1) ◽  
pp. 59-69 ◽  
Author(s):  
M.M. Fatih Karahan ◽  
Mehmet Pakdemirli

AbstractStrongly nonlinear cubic-quintic Duffing oscillatoris considered. Approximate solutions are derived using the multiple scales Lindstedt Poincare method (MSLP), a relatively new method developed for strongly nonlinear oscillators. The free undamped oscillator is considered first. Approximate analytical solutions of the MSLP are contrasted with the classical multiple scales (MS) method and numerical simulations. It is found that contrary to the classical MS method, the MSLP can provide acceptable solutions for the case of strong nonlinearities. Next, the forced and damped case is treated. Frequency response curves of both the MS and MSLP methods are obtained and contrasted with the numerical solutions. The MSLP method and numerical simulations are in good agreement while there are discrepancies between the MS and numerical solutions.


1998 ◽  
Vol 9 (2) ◽  
pp. 187-194
Author(s):  
J. HU

In a recent paper, the author showed that for certain symmetric bisuperlinear equations, cosine-like boundary behaviours will not yield symmetric solutions [1]. In this paper, we attack the adiabatic invariant problem by showing that, for these strongly nonlinear oscillators, the adiabatic invariant is intimately related to z′(0;∈) for a family of solutions.


Sign in / Sign up

Export Citation Format

Share Document