Free and Forced Vibrations of the Strongly Nonlinear Cubic-Quintic Duffing Oscillators

2017 ◽  
Vol 72 (1) ◽  
pp. 59-69 ◽  
Author(s):  
M.M. Fatih Karahan ◽  
Mehmet Pakdemirli

AbstractStrongly nonlinear cubic-quintic Duffing oscillatoris considered. Approximate solutions are derived using the multiple scales Lindstedt Poincare method (MSLP), a relatively new method developed for strongly nonlinear oscillators. The free undamped oscillator is considered first. Approximate analytical solutions of the MSLP are contrasted with the classical multiple scales (MS) method and numerical simulations. It is found that contrary to the classical MS method, the MSLP can provide acceptable solutions for the case of strong nonlinearities. Next, the forced and damped case is treated. Frequency response curves of both the MS and MSLP methods are obtained and contrasted with the numerical solutions. The MSLP method and numerical simulations are in good agreement while there are discrepancies between the MS and numerical solutions.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Vasile Marinca ◽  
Nicolae Herişanu

We introduce a new method, namely, the Optimal Iteration Perturbation Method (OIPM), to solve nonlinear differential equations of oscillators with cubic and harmonic restoring force. We illustrate that OIPM is very effective and convenient and does not require linearization or small perturbation. Contrary to conventional methods, in OIPM, only one iteration leads to high accuracy of the solutions. The main advantage of this approach consists in that it provides a convenient way to control the convergence of approximate solutions in a very rigorous way and allows adjustment of convergence regions where necessary. A very good agreement was found between approximate and numerical solutions, which prove that OIPM is very efficient and accurate.


1989 ◽  
Vol 206 ◽  
pp. 1-23 ◽  
Author(s):  
W. K. Melville ◽  
G. G. Tomasson ◽  
D. P. Renouard

We consider the evolution of weakly nonlinear dispersive long waves in a rotating channel. The governing equations are derived and approximate solutions obtained for the initial data corresponding to a Kelvin wave. In consequence of the small nonlinear speed correction it is shown that weakly nonlinear Kelvin waves are unstable to a direct nonlinear resonance with the linear Poincaré modes of the channel. Numerical solutions of the governing equations are computed and found to give good agreement with the approximate analytical solutions. It is shown that the curvature of the wavefront and the decay of the leading wave amplitude along the channel are attributable to the Poincaré waves generated by the resonance. These results appear to give a qualitative explanation of the experimental results of Maxworthy (1983), and Renouard, Chabert d'Hières & Zhang (1987).


2017 ◽  
Vol 72 (6) ◽  
pp. 547-557 ◽  
Author(s):  
M.M. Fatih Karahan

AbstractA new perturbation method, multiple scales Lindstedt–Poincare (MSLP) is applied to jerk equations with cubic nonlinearities. Three different jerk equations are investigated. Approximate analytical solutions and periods are obtained using MSLP method. Both approximate analytical solutions and periods are contrasted with numerical and exact results. For the case of strong nonlinearities, obtained results are in good agreement with numerical and exact ones.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Banan Maayah ◽  
Samia Bushnaq ◽  
Shaher Momani ◽  
Omar Abu Arqub

A new algorithm called multistep reproducing kernel Hilbert space method is represented to solve nonlinear oscillator’s models. The proposed scheme is a modification of the reproducing kernel Hilbert space method, which will increase the intervals of convergence for the series solution. The numerical results demonstrate the validity and the applicability of the new technique. A very good agreement was found between the results obtained using the presented algorithm and the Runge-Kutta method, which shows that the multistep reproducing kernel Hilbert space method is very efficient and convenient for solving nonlinear oscillator’s models.


2012 ◽  
Vol 22 (06) ◽  
pp. 1250136 ◽  
Author(s):  
A. Y. T. LEUNG ◽  
ZHONGJIN GUO

Both the primary and superharmonic resonance responses of a rigid rotor supported by active magnetic bearings are investigated by means of the total harmonic balance method that does not linearize the nonlinear terms so that all solution branches can be studied. Two sets of second order ordinary differential equations governing the modulation of the amplitudes of vibration in the two orthogonal directions normal to the shaft axis are derived. Primary resonance is considered by six equations and superharmonic by eight equations. These equations are solved using the polynomial homotopy continuation technique to obtain all the steady state solutions whose stability is determined by the eigenvalues of the Jacobian matrix. It is found that different shapes of frequency-response and forcing amplitude-response curves can exist. Multiple-valued solutions, jump phenomenon, saddle-node, pitchfork and Hopf bifurcations are observed analytically and verified numerically. The new contributions include the foolproof multiple solutions of the strongly nonlinear system by means of the total harmonic balance. Some predicted frequency varying amplitudes could not be obtained by the multiple scales method.


Author(s):  
Albert C. J. Luo ◽  
Bo Yu

The approximate analytical solutions of the period-m motions for a periodically forced, quadratic nonlinear oscillator are presented. The stability and bifurcation of such approximate solutions in the quadratic nonlinear oscillator are discussed. The bifurcation tree of period-1 to chaos is presented. Numerical simulations for period-1 to period-4 motions in such quadratic oscillator are carried out for comparison of approximate analytical solutions. Such an investigation provides how to analytically determine bifurcation of periodic motion to chaos.


2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Vasile Marinca ◽  
Remus-Daniel Ene ◽  
Bogdan Marinca

This paper deals with the Falkner-Skan nonlinear differential equation. An analytic approximate technique, namely, optimal homotopy asymptotic method (OHAM), is employed to propose a procedure to solve a boundary-layer problem. Our method does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. The obtained results reveal that this procedure is very effective, simple, and accurate. A very good agreement was found between our approximate results and numerical solutions, which prove that OHAM is very efficient in practice, ensuring a very rapid convergence after only one iteration.


Author(s):  
Najeeb Alam Khan ◽  
Muhammad Jamil ◽  
Asmat Ara ◽  
Subir Das

In this paper, the new homotopy perturbation method (NHPM) has been successively applied for finding approximate analytical solutions of the fractional order batch reactor system. An approximate analytical solution for the concentration of reactants and products that is valid for a time interval. The approximate analytical procedure is depends only on two components. The behavior of the solution and effects of different parameters and fractional index are shown graphically. Numerical solutions of ordinary batch reactor system verify our approximate solution with good agreement.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Alex Elías-Zúñiga ◽  
Oscar Martínez-Romero

We introduce a nonlinearization procedure that replaces the system potential energy by an equivalent representation form that is used to derive analytical solutions of strongly nonlinear conservative oscillators. We illustrate the applicability of this method by finding the approximate solutions of two strongly nonlinear oscillators and show that this procedure provides solutions that follow well the numerical integration solutions of the corresponding equations of motion.


Sign in / Sign up

Export Citation Format

Share Document