scholarly journals Exact Analytical and Numerical Solutions to the Time-Dependent Schrödinger Equation for a One-Dimensional Potential Exhibiting Non-Exponential Decay at All Times

2010 ◽  
Vol 01 (02) ◽  
pp. 124-136 ◽  
Author(s):  
Athanasios N. Petridis ◽  
Lawrence P. Staunton ◽  
Jon Vermedahl ◽  
Marshall Luban
Author(s):  
Weitao Yang ◽  
Jin Xu

Most analytical and semi-analytical models for pumping-induced land subsidence invoke the simplifying assumptions regarding characteristics of geomaterials, as well as the pattern of drawdown response to pumping. This paper presents an analytical solution for one-dimensional consolidation of the multilayered soil due to groundwater drawdown, in which viscoelastic property and time-dependent drawdown are taken into account. The presented solution is developed by using the boundary transformation techniques. The validity of the proposed solution is verified by comparing with a degenerated case for a single layer, as well as with the numerical solutions and experimental results for a two-layer system. The difference between the average consolidation degree Up defined by hydraulic head and that Us defined by total settlement is discussed. The detailed parametric studies are conducted to reveal the effects of viscoelastic properties and drawdown patterns on the consolidation process. It is revealed that while the effect of different drawdown response patterns is significant during the early-intermediate stages of consolidation, the viscoelastic properties may have a more dominant influence on long-term consolidation behavior, depending on the values of the material parameters, which are reflected in both the deformation process of soil layers and the dissipation of excess pore-water pressure.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
N. Manitcharoen ◽  
B. Pimpunchat

The study of pollution movement is an important basis for solving water quality problems, which is of vital importance in almost every country. This research proposes the motion of flowing pollution by using a mathematical model in one-dimensional advection-dispersion equation which includes terms of decay and enlargement process. We are assuming an added pollutant sources along the river in two cases: uniformly and exponentially increasing terms. The unsteady state analytical solutions are obtained by using the Laplace transformation, and the finite difference technique is utilized for numerical solutions. Solutions are compared by relative error values. The result appears acceptable between the analytical and numerical solutions. Varying the value of the rate of pollutant addition along the river (q) and the arbitrary constant of exponential pollution source term (λ) is displayed to explain the behavior of the incremental concentration. It is shown that the concentration increases as q and λ increase, and the exponentially increasing pollution source is a suitable model for the behavior of incremental pollution along the river. The results are presented and discussed graphically. This work can be applied to other physical situations described by advection-dispersion phenomena which are affected by the increase of those source concentrations.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Dawei Cheng ◽  
Wenke Wang ◽  
Xi Chen ◽  
Zaiyong Zhang

For one-dimensional (1D) nonlinear consolidation, the governing partial differential equation is nonlinear. This paper develops the finite analytic method (FAM) to simulate 1D nonlinear consolidation under different time-dependent loading and initial conditions. To achieve this, the assumption of constant initial effective stress is not considered and the governing partial differential equation is transformed into the diffusion equation. Then, the finite analytic implicit scheme is established. The convergence and stability of finite analytic numerical scheme are proven by a rigorous mathematical analysis. In addition, the paper obtains three corrected semianalytical solutions undergoing suddenly imposed constant loading, single ramp loading, and trapezoidal cyclic loading, respectively. Comparisons of the results of FAM with the three semianalytical solutions and the result of FDM, respectively, show that the FAM can obtain stable and accurate numerical solutions and ensure the convergence of spatial discretization for 1D nonlinear consolidation.


Sign in / Sign up

Export Citation Format

Share Document