groundwater drawdown
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 28)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
pp. 106529
Author(s):  
Cagri Gokdemir ◽  
Yandong Li ◽  
Yoram Rubin ◽  
Xiaojun Li

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3297
Author(s):  
Xuehan Zhang ◽  
Xuwei Wang ◽  
Yeshuang Xu

The partial penetrating waterproof curtain combined with pumping wells is widely applied to deep foundation pit dewatering engineering. The filter tube of the pumping well plays a critical role on the environment effect that resulted from foundation pit dewatering. This paper investigated the impact of the filter tube on the groundwater drawdown outside the pit to provide a theoretical basis for the foundation pit dewatering design. Three patterns according to the relative position of the waterproof curtain and the filter tube, which are called wall-well patterns, namely the full-closed pattern, part-closed pattern, and none-closed pattern, have been analyzed. By taking a practice engineering case in Shanghai as an example, the relationship among the proportion of the filter tube length to the dewatering aquifer thickness, the buried depth difference of the wall-well, and the groundwater drawdown difference at both sides of the waterproof curtain are discussed by numerical simulation. The full-closed pattern is the optimal wall-well pattern on the ideal condition. The suggested and optimal values of the filter tube length to the dewatering aquifer thickness are 38.7% and 58.2%. The suggested and optimal values of the buried depth difference of the wall-well are −6.41 m and −1.92 m.


Author(s):  
Weitao Yang ◽  
Jin Xu

Most analytical and semi-analytical models for pumping-induced land subsidence invoke the simplifying assumptions regarding characteristics of geomaterials, as well as the pattern of drawdown response to pumping. This paper presents an analytical solution for one-dimensional consolidation of the multilayered soil due to groundwater drawdown, in which viscoelastic property and time-dependent drawdown are taken into account. The presented solution is developed by using the boundary transformation techniques. The validity of the proposed solution is verified by comparing with a degenerated case for a single layer, as well as with the numerical solutions and experimental results for a two-layer system. The difference between the average consolidation degree Up defined by hydraulic head and that Us defined by total settlement is discussed. The detailed parametric studies are conducted to reveal the effects of viscoelastic properties and drawdown patterns on the consolidation process. It is revealed that while the effect of different drawdown response patterns is significant during the early-intermediate stages of consolidation, the viscoelastic properties may have a more dominant influence on long-term consolidation behavior, depending on the values of the material parameters, which are reflected in both the deformation process of soil layers and the dissipation of excess pore-water pressure.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xuejun Chen ◽  
Ruijian Guo ◽  
Lingming Tang ◽  
Xiaochen Zhang

In this study, the ellipsoidal soil cave with vertical collapses in the covering karst area is studied. Based on certain assumptions, the mechanical model of karst collapse caused by groundwater drop was established. Then, based on the negative pressure calculation formula of soil cave cavity according to Boyle–Mariotte’s law, the expression of the stability coefficient of the soil cave was proposed. Subsequently, the feasibility of the theoretical formula was verified. The calculation example analyzed the relationship of groundwater parameters and overburden thickness. The results show that when the initial groundwater level is higher than the top of cave, the law between the stability coefficient of soil cave and groundwater drawdown shows the jumping horizontal broken line. Thus, soil cave tends to collapse when the falling groundwater level drops over the vault; when the initial groundwater level ranges from the bottom to the top of the cave body, the stability coefficient and groundwater drawdown show a negative correlation law, the curve is steep at the early stage and then becomes gentle at the latter stage, and the higher the initial groundwater level in the cave is, the greater stability coefficient of soil cave reduces; when the initial groundwater level is lower than the bottom of the cave, the effect of drawdown is limited. In addition, for the small drawdown or low initial groundwater level, the stability coefficient of soil cave first decreases and then increases with the increases in thickness of overburden, and the thinner the overburden is, the greater the drawdown rate is; when the drawdown or the initial groundwater level is higher, the stability coefficient of soil cave positively relates to the thickness of the overburden layer.


2021 ◽  
Vol 35 ◽  
pp. 100808
Author(s):  
Hone-Jay Chu ◽  
Muhammad Zeeshan Ali ◽  
Tatas ◽  
Thomas J. Burbey

2021 ◽  
Author(s):  
Vahid Gholami ◽  
Hossein Sahour

Abstract Groundwater drawdown is typically measured using pumping tests and field experiments; however, the traditional methods are time-consuming and costly when applied to extensive areas. In this research, a methodology is introduced based on artificial neural network (ANN)s and field measurements in an alluvial aquifer in the north of Iran. First, the annual drawdown as the output of the ANN models in 250 piezometric wells was measured, and the data were divided into three categories of training data, cross-validation data, and test data. Then, the effective factors in groundwater drawdown including groundwater depth, annual precipitation, annual evaporation, the transmissivity of the aquifer formation, elevation, distance from the sea, distance from water sources (recharge), population density, and groundwater extraction in the influence radius of each well (1000 m) were identified and used as the inputs of the ANN models. Several ANN methods were evaluated, and the predictions were compared with the observations. Results show that, the modular neural network (MNN) showed the highest performance in modeling groundwater drawdown ​​(Training R-sqr = 0.96, test R-sqr = 0.81). The optimum network was fitted to available input data to map the annual drawdown ​​across the entire aquifer. The accuracy assessment of the final map yielded favorable results (R-sqr = 0.8). The adopted methodology can be applied for the prediction of groundwater drawdown in the study site and similar settings elsewhere.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaowu Tang ◽  
Jiaxin Liang ◽  
Wei Liu ◽  
Yuhang Ye ◽  
Penglu Gan ◽  
...  

Accurate prediction of surface settlement induced by tunnel excavation is significant for preventing damage to existing structures under complex geological conditions. The Peck formula is currently considered as an efficient solution for surface settlement prediction. This paper proposes a modified Peck formula considering geological conditions to improve the accuracy of surface settlement prediction of twin tunnels. The asynchronization of the sinking rate and stability of the vault settlement and surface settlement within the river-affected area may attribute to the groundwater drawdown caused by cofferdam construction on the river. A modified Peck formula is put forward with soil permeability and width-controlling parameters involved. There is a small settlement at the center of the twin tunnels, making the settlement trough upward buckling, which is like a “W” shape. This situation can be accurately predicted by the modified formula with a significantly increased adjusted R-square. The modified formula can accurately predict the surface settlement of tunnels excavated in low permeability soil layers with a permeability coefficient between 10−4 cm/s and 10−7 cm/s, especially in the groundwater drawdown environment. The reliability of the modified Peck formula is verified by other cases in Nanjing and Singapore.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 418
Author(s):  
Xu-wei Wang ◽  
Ye-shuang Xu

Foundation dewatering combined with a waterproof curtain is widely applied to ensure the safety of the foundation pit in areas with multi-aquifer–aquitard alternative strata. The buried depth of the diaphragm wall can influence the environmental effect due to dewatering obviously. This paper investigates the impact of the buried depth of the diaphragm wall on the groundwater drawdown considering the anisotropic permeability of the dewatering aquifer. Numerical simulation is conducted based on an engineering case. The ratio of penetrating depth of diaphragm wall to thickness of dewatering aquifer (RW) and the ratio of horizontal and vertical hydraulic conductivity of dewatering aquifer (RC) are varied. The relationship between approximate hydraulic gradient (Δi) and RW (or RC) can be fitted by Boltzmann curve (or logarithmic curve). Effective, suggested and control values of RW (or RC) are proposed, of which the suggested value is recommended in practical engineering. The effective, suggested and control value of RW can be calculated by logarithmical equation considering the value of RC.


Sign in / Sign up

Export Citation Format

Share Document