scholarly journals Asymptotic behavior of 3-D stochastic primitive equations of large-scale moist atmosphere with additive noise

2021 ◽  
Vol 19 (1) ◽  
pp. 1-38
Author(s):  
Lidan Wang ◽  
Guoli Zhou ◽  
Boling Guo
2020 ◽  
pp. 2050020
Author(s):  
Renhai Wang ◽  
Bixiang Wang

This paper deals with the asymptotic behavior of solutions to non-autonomous, fractional, stochastic [Formula: see text]-Laplacian equations driven by additive white noise and random terms defined on the unbounded domain [Formula: see text]. We first prove the existence and uniqueness of solutions for polynomial drift terms of arbitrary order. We then establish the existence and uniqueness of pullback random attractors for the system in [Formula: see text]. This attractor is further proved to be a bi-spatial [Formula: see text]-attractor for any [Formula: see text], which is compact, measurable in [Formula: see text] and attracts all random subsets of [Formula: see text] with respect to the norm of [Formula: see text]. Finally, we show the robustness of these attractors as the intensity of noise and the random coefficients approach zero. The idea of uniform tail-estimates as well as the method of higher-order estimates on difference of solutions are employed to derive the pullback asymptotic compactness of solutions in [Formula: see text] for [Formula: see text] in order to overcome the non-compactness of Sobolev embeddings on [Formula: see text] and the nonlinearity of the fractional [Formula: see text]-Laplace operator.


Sign in / Sign up

Export Citation Format

Share Document