ginzburg landau
Recently Published Documents


TOTAL DOCUMENTS

3719
(FIVE YEARS 477)

H-INDEX

91
(FIVE YEARS 10)

2022 ◽  
Vol 155 ◽  
pp. 111748
Author(s):  
Ahmed H. Arnous ◽  
Anjan Biswas ◽  
Yakup Yıldırım ◽  
Qin Zhou ◽  
Wenjun Liu ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Daniel Perez-Salinas ◽  
Allan S. Johnson ◽  
Dharmalingam Prabhakaran ◽  
Simon Wall

AbstractSpontaneous C4-symmetry breaking phases are ubiquitous in layered quantum materials, and often compete with other phases such as superconductivity. Preferential suppression of the symmetry broken phases by light has been used to explain non-equilibrium light induced superconductivity, metallicity, and the creation of metastable states. Key to understanding how these phases emerge is understanding how C4 symmetry is restored. A leading approach is based on time-dependent Ginzburg-Landau theory, which explains the coherence response seen in many systems. However, we show that, for the case of the single layered manganite La0.5Sr1.5MnO4, the theory fails. Instead, we find an ultrafast inhomogeneous disordering transition in which the mean-field order parameter no longer reflects the atomic-scale state of the system. Our results suggest that disorder may be common to light-induced phase transitions, and methods beyond the mean-field are necessary for understanding and manipulating photoinduced phases.


Author(s):  
Justin Q Anderson ◽  
Praveen Janantha ◽  
Diego Alcala ◽  
Mingzhong Wu ◽  
Lincoln D Carr

Abstract We report the clean experimental realization of cubic-quintic complex Ginzburg-Landau physics in a single driven, damped system. Four numerically predicted categories of complex dynamical behavior and pattern formation are identified for bright and dark solitary waves propagating around an active magnetic thin film-based feedback ring: (1) periodic breathing; (2) complex recurrence; (3) spontaneous spatial shifting; and (4) intermittency. These nontransient, long lifetime behaviors are observed in self-generated microwave spin wave envelopes circulating within a dispersive, nonlinear yttrium iron garnet waveguide. The waveguide is operated in a ring geometry in which the net losses are directly compensated for via linear amplification on each round trip (of the order of 100~ns). These behaviors exhibit periods ranging from tens to thousands of round trip times (of the order of $\mu$s) and are stable for 1000s of periods (of the order of~ms). We present 10 observations of these dynamical behaviors which span the experimentally accessible ranges of attractive cubic nonlinearity, dispersion, and external field strength that support the self-generation of backward volume spin waves in a four-wave-mixing dominant regime. Three-wave splitting is not explicitly forbidden and is treated as an additional source of nonlinear losses. All observed behaviors are robust over wide parameter regimes, making them promising for technological applications. We present ten experimental observations which span all categories of dynamical behavior previously theoretically predicted to be observable. This represents a complete experimental verification of the cubic-quintic complex Ginzburg-Landau equation as a model for the study of fundamental, complex nonlinear dynamics for driven, damped waves evolving in nonlinear, dispersive systems. The reported dynamical pattern formation of self-generated dark solitary waves in attractive nonlinearity without external sources or potentials, however, is entirely novel and is presented for both the periodic breather and complex recurrence behaviors.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 130
Author(s):  
Wael W. Mohammed ◽  
Naveed Iqbal ◽  
Thongchai Botmart

This paper considers a class of stochastic fractional-space diffusion equations with polynomials. We establish a limiting equation that specifies the critical dynamics in a rigorous way. After this, we use the limiting equation, which is an ordinary differential equation, to approximate the solution of the stochastic fractional-space diffusion equation. This equation has never been studied before using a combination of additive noise and fractional-space, therefore we generalize some previously obtained results as special cases. Furthermore, we use Fisher’s and Ginzburg–Landau equations to illustrate our results. Finally, we look at how additive noise affects the stabilization of the solutions.


2022 ◽  
Vol 258 ◽  
pp. 02006
Author(s):  
Atsuki Hiraguchi ◽  
Katsuya Ishiguro ◽  
Tsuneo Suzuki

We investigate the Abelian dual Meissner effect due to violation of the non-Abelian Bianchi identity in SU (3) gauge thoery without gauge fixing. To decide the vacuum type, we evaluate the Ginzburg-Landau parameter from the spatial distribution of color electric fields and squared monopole density. Although the study is done only on 24 (40)3 × 4 lattice at β = 5.6, the SU (3) vacuum is found to be of the type 1 near the border of type 1 and type 2. We also confirm the dual Ampere’s law directly.


Author(s):  
Roberto Alicandro ◽  
Andrea Braides ◽  
Marco Cicalese ◽  
Lucia De Luca ◽  
Andrey Piatnitski

AbstractWe describe the emergence of topological singularities in periodic media within the Ginzburg–Landau model and the core-radius approach. The energy functionals of both models are denoted by $$E_{\varepsilon ,\delta }$$ E ε , δ , where $$\varepsilon $$ ε represent the coherence length (in the Ginzburg–Landau model) or the core-radius size (in the core-radius approach) and $$\delta $$ δ denotes the periodicity scale. We carry out the $$\Gamma $$ Γ -convergence analysis of $$E_{\varepsilon ,\delta }$$ E ε , δ as $$\varepsilon \rightarrow 0$$ ε → 0 and $$\delta =\delta _\varepsilon \rightarrow 0$$ δ = δ ε → 0 in the $$|\log \varepsilon |$$ | log ε | scaling regime, showing that the $$\Gamma $$ Γ -limit consists in the energy cost of finitely many vortex-like point singularities of integer degree. After introducing the scale parameter $$\begin{aligned} \lambda =\min \Bigl \{1,\lim _{\varepsilon \rightarrow 0} {|\log \delta _\varepsilon |\over |\log \varepsilon |}\Bigr \} \end{aligned}$$ λ = min { 1 , lim ε → 0 | log δ ε | | log ε | } (upon extraction of subsequences), we show that in a sense we always have a separation-of-scale effect: at scales smaller than $$\varepsilon ^\lambda $$ ε λ we first have a concentration process around some vortices whose location is subsequently optimized, while for scales larger than $$\varepsilon ^\lambda $$ ε λ the concentration process takes place “after” homogenization.


Author(s):  
Marco A. Viscarra ◽  
Deterlino Urzagasti

In this paper, we numerically study dark solitons in normal-dispersion optical fibers described by the cubic-quintic complex Ginzburg–Landau equation. The effects of the third-order dispersion, self-steepening, stimulated Raman dispersion, and external potentials are also considered. The existence, chaotic content and interactions of these objects are analyzed, as well as the tunneling through a potential barrier and the formation of dark breathers aside from dark solitons in two dimensions and their mutual interactions as well as with periodic potentials. Furthermore, the homogeneous solutions of the model and the conditions for their stability are also analytically obtained.


Sign in / Sign up

Export Citation Format

Share Document