scholarly journals A local asymptotic analysis of the discrete first Painlevé equation as the discrete independent variable approaches infinity

1997 ◽  
Vol 4 (2) ◽  
pp. 124-133 ◽  
Author(s):  
Nalini Joshi
2012 ◽  
Vol 22 (09) ◽  
pp. 1250211
Author(s):  
ATHANASSIOS S. FOKAS ◽  
DI YANG

One of the authors recently introduced the concept of conjugate Hamiltonian systems: the solution of the equation h = H(p, q, t), where H is a given Hamiltonian containing t explicitly, yields the function t = T(p, q, h), which defines a new Hamiltonian system with Hamiltonian T and independent variable h. By employing this construction and by using the fact that the classical Painlevé equations are Hamiltonian systems, it is straightforward to associate with each Painlevé equation two new integrable ODEs. Here, we investigate the conjugate Painlevé II equations. In particular, for these novel integrable ODEs, we present a Lax pair formulation, as well as a class of implicit solutions. We also construct conjugate equations associated with Painlevé I and Painlevé IV equations.


2003 ◽  
Vol 2003 (13) ◽  
pp. 845-851
Author(s):  
Youmin Lu

There have been many results on the asymptotics of the Painlevé transcendents in recent years, but the asymptotics of the fourth Painlevé transcendent has not been studied much. In this note, we study the general fourth Painlevé equation and develop an asymptotic representation of a group of its solutions as the independent variable approaches infinity along a straight line.


Sign in / Sign up

Export Citation Format

Share Document