lyapunov functions
Recently Published Documents


TOTAL DOCUMENTS

2337
(FIVE YEARS 380)

H-INDEX

84
(FIVE YEARS 10)

2022 ◽  
Vol 6 (1) ◽  
pp. 34
Author(s):  
Ravi Agarwal ◽  
Snezhana Hristova ◽  
Donal O’Regan

In this paper, nonlinear nonautonomous equations with the generalized proportional Caputo fractional derivative (GPFD) are considered. Some stability properties are studied by the help of the Lyapunov functions and their GPFDs. A scalar nonlinear fractional differential equation with the GPFD is considered as a comparison equation, and some comparison results are proven. Sufficient conditions for stability and asymptotic stability were obtained. Examples illustrating the results and ideas in this paper are also provided.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3277
Author(s):  
Fangju Jia ◽  
Chunzheng Cao

We study the rumor propagation model with regime switching considering both colored and white noises. Firstly, by constructing suitable Lyapunov functions, the sufficient conditions for ergodic stationary distribution and extinction are obtained. Then we obtain the threshold Rs which guarantees the extinction and the existence of the stationary distribution of the rumor. Finally, numerical simulations are performed to verify our model. The results indicated that there is a unique ergodic stationary distribution when Rs>1. The rumor becomes extinct exponentially with probability one when Rs<1.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1631
Author(s):  
Gani Stamov ◽  
Ivanka Stamova ◽  
Cvetelina Spirova

In this paper we study an impulsive delayed reaction-diffusion model applied in biology. The introduced model generalizes existing reaction-diffusion delayed epidemic models to the impulsive case. The integral manifolds notion has been introduced to the model under consideration. This notion extends the single state notion and has important applications in the study of multi-stable systems. By means of an extension of the Lyapunov method integral manifolds’ existence, results are established. Based on the Lyapunov functions technique combined with a Poincarè-type inequality qualitative criteria related to boundedness, permanence, and stability of the integral manifolds are also presented. The application of the proposed impulsive control model is closely related to a most important problems in the mathematical biology—the problem of optimal control of epidemic models. The considered impulsive effects can be used by epidemiologists as a very effective therapy control strategy. In addition, since the integral manifolds approach is relevant in various contexts, our results can be applied in the qualitative investigations of many problems in the epidemiology of diverse interest.


2021 ◽  
Vol 24 (4) ◽  
pp. 46-51
Author(s):  
Asad J. Taher ◽  
◽  
Fadhel S. Fadhel ◽  
Nabaa N. Hasan ◽  
◽  
...  

In this paper the method of adaptive backstepping for stabilizing and solving system of ordinary and partial differential equations will be used and applied to investigate and study the stability linear systems of Caputo fractional order ordinary differential equations. The basic idea of this approach is to find a quadratic Lyapunov functions for stabilizing the subsystems.


2021 ◽  
pp. 178-184
Author(s):  
Cutberto Romero-Melendez ◽  
David Castillo-Fernandez

In this paper we study the stochastic stability of numerical solutions of a stochastic controlled Schr¨odinger equation. We investigate the boundedness in second moment, the convergence and the stability of the zero solution for this equation, using two new definitions of almost sure exponential robust stability and asymptotic stability, for the Euler-Maruyama numerical scheme. Considering that the diffusion term is controlled, by using the method of Lyapunov functions and the corresponding diffusion operator associated, we apply techniques of X. Mao and A. Tsoi for achieve our task. Finally, we illustrate this method with a problem in Nuclear Magnetic Resonance (NMR).


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 322
Author(s):  
Ricardo Almeida ◽  
Ravi P. Agarwal ◽  
Snezhana Hristova ◽  
Donal O’Regan

A fractional model of the Hopfield neural network is considered in the case of the application of the generalized proportional Caputo fractional derivative. The stability analysis of this model is used to show the reliability of the processed information. An equilibrium is defined, which is generally not a constant (different than the case of ordinary derivatives and Caputo-type fractional derivatives). We define the exponential stability and the Mittag–Leffler stability of the equilibrium. For this, we extend the second method of Lyapunov in the fractional-order case and establish a useful inequality for the generalized proportional Caputo fractional derivative of the quadratic Lyapunov function. Several sufficient conditions are presented to guarantee these types of stability. Finally, two numerical examples are presented to illustrate the effectiveness of our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document