scholarly journals Optimal metric regularity in general relativity follows from the RT-equations by elliptic regularity theory in $L^p$ -spaces

2020 ◽  
Vol 27 (3) ◽  
pp. 199-242
Author(s):  
Moritz Reintjes ◽  
Blake Temple
2016 ◽  
Vol 101 (3) ◽  
pp. 376-417 ◽  
Author(s):  
A. D. IOFFE

Metric regularity theory lies in the very heart of variational analysis, a relatively new discipline whose appearance was, to a large extent, determined by the needs of modern optimization theory in which such phenomena as nondifferentiability and set-valued mappings naturally appear. The roots of the theory go back to such fundamental results of the classical analysis as the implicit function theorem, Sard theorem and some others. The paper offers a survey of the state of the art of some principal parts of the theory along with a variety of its applications in analysis and optimization.


Author(s):  
Moritz Reintjes ◽  
Blake Temple

We present the authors’ new theory of the RT-equations (‘regularity transformation’ or ‘Reintjes–Temple’ equations), nonlinear elliptic partial differential equations which determine the coordinate transformations which smooth connections Γ to optimal regularity, one derivative smoother than the Riemann curvature tensor Riem( Γ ). As one application we extend Uhlenbeck compactness from Riemannian to Lorentzian geometry; and as another application we establish that regularity singularities at general relativistic shock waves can always be removed by coordinate transformation. This is based on establishing a general multi-dimensional existence theory for the RT-equations by application of elliptic regularity theory in L p spaces. The theory and results announced in this paper apply to arbitrary L ∞ connections on the tangent bundle T M of arbitrary manifolds M , including Lorentzian manifolds of general relativity.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jianyi Chen ◽  
Zhitao Zhang ◽  
Guijuan Chang ◽  
Jing Zhao

Abstract In this paper, we study the nonlinear Klein–Gordon systems arising from relativistic physics and quantum field theories { u t ⁢ t - u x ⁢ x + b ⁢ u + ε ⁢ v + f ⁢ ( t , x , u ) = 0 , v t ⁢ t - v x ⁢ x + b ⁢ v + ε ⁢ u + g ⁢ ( t , x , v ) = 0 , \left\{\begin{aligned} \displaystyle{}u_{tt}-u_{xx}+bu+\varepsilon v+f(t,x,u)&\displaystyle=0,\\ \displaystyle v_{tt}-v_{xx}+bv+\varepsilon u+g(t,x,v)&\displaystyle=0,\end{aligned}\right. where u , v u,v satisfy the Dirichlet boundary conditions on spatial interval [ 0 , π ] [0,\pi] , b > 0 b>0 and f , g f,g are 2 ⁢ π 2\pi -periodic in 𝑡. We are concerned with the existence, regularity and asymptotic behavior of time-periodic solutions to the linearly coupled problem as 𝜀 goes to 0. Firstly, under some superlinear growth and monotonicity assumptions on 𝑓 and 𝑔, we obtain the solutions ( u ε , v ε ) (u_{\varepsilon},v_{\varepsilon}) with time period 2 ⁢ π 2\pi for the problem as the linear coupling constant 𝜀 is sufficiently small, by constructing critical points of an indefinite functional via variational methods. Secondly, we give a precise characterization for the asymptotic behavior of these solutions, and show that, as ε → 0 \varepsilon\to 0 , ( u ε , v ε ) (u_{\varepsilon},v_{\varepsilon}) converge to the solutions of the wave equations without the coupling terms. Finally, by careful analysis which is quite different from the elliptic regularity theory, we obtain some interesting results concerning the higher regularity of the periodic solutions.


2016 ◽  
Vol 101 (2) ◽  
pp. 188-243 ◽  
Author(s):  
A. D. IOFFE

Metric regularity theory lies at the very heart of variational analysis, a relatively new discipline whose appearance was, to a large extent, determined by the needs of modern optimization theory in which such phenomena as nondifferentiability and set-valued mappings naturally appear. The roots of the theory go back to such fundamental results of the classical analysis as the implicit function theorem, Sard theorem and some others. This paper offers a survey of the state of the art of some principal parts of the theory along with a variety of its applications in analysis and optimization.


Sign in / Sign up

Export Citation Format

Share Document