Vanishing theorems for $(k, s)$-positive vector bundles on weakly pseudoconvex Kähler manifolds

2017 ◽  
Vol 13 (4) ◽  
pp. 729-739
Author(s):  
Kai Tang
2011 ◽  
Vol 22 (04) ◽  
pp. 545-576 ◽  
Author(s):  
QILIN YANG

We study the (k, s)-positivity for holomorphic vector bundles on compact complex manifolds. (0, s)-positivity is exactly the Demailly s-positivity and a (k, 1)-positive line bundle is just a k-positive line bundle in the sense of Sommese. In this way we get a unified theory for all kinds of positivities used for semipositive vector bundles. Several new vanishing theorems for (k, s)-positive vector bundles are proved and the vanishing theorems for k-ample vector bundles on projective algebraic manifolds are generalized to k-positive vector bundles on compact Kähler manifolds.


2018 ◽  
Vol 62 (3) ◽  
pp. 623-641
Author(s):  
Bin Shen

AbstractIn this paper, we investigate the holomorphic sections of holomorphic Finsler bundles over both compact and non-compact complete complex manifolds. We also inquire into the holomorphic vector fields on compact and non-compact complete complex Finsler manifolds. We get vanishing theorems in each case according to different certain curvature conditions. This work can be considered as generalizations of the classical results on Kähler manifolds and hermitian bundles.


Author(s):  
Ping Li ◽  
Fangyang Zheng

Abstract This article is concerned with Chern class and Chern number inequalities on polarized manifolds and nef vector bundles. For a polarized pair $(M,L)$ with $L$ very ample, our 1st main result is a family of sharp Chern class inequalities. Among them the 1st one is a variant of a classical result and the equality case of the 2nd one is a characterization of hypersurfaces. The 2nd main result is a Chern number inequality on it, which includes a reverse Miyaoka–Yau-type inequality. The 3rd main result is that the Chern numbers of a nef vector bundle over a compact Kähler manifold are bounded below by the Euler number. As an application, we classify compact Kähler manifolds with nonnegative bisectional curvature whose Chern numbers are all positive. A conjecture related to the Euler number of compact Kähler manifolds with nonpositive bisectional curvature is proposed, which can be regarded as a complex analogue to the Hopf conjecture.


Geometry ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Qilin Yang

We prove that if B is a k-positive holomorphic line bundle on a compact hyper-kähler manifold M, then HpM,Ωq⊗B=0 for P>n+[k/2] with q a nonnegative integer. In a special case, k=0 and q=0, we recover a vanishing theorem of Verbitsky’s with a little stronger assumption.


2013 ◽  
Vol 237 ◽  
pp. 147-164 ◽  
Author(s):  
S. Ivanov ◽  
G. Papadopoulos

Sign in / Sign up

Export Citation Format

Share Document