scholarly journals Approximate solution of high-order integro-differential equations using radial basis functions

2017 ◽  
Vol 11 (2) ◽  
pp. 26-29
Author(s):  
Asma MAADADI ◽  
Abdelbaki MEROUANI ◽  
Azedine RAHMOUNE
2019 ◽  
Vol 53 (3) ◽  
pp. 925-958 ◽  
Author(s):  
Jan S. Hesthaven ◽  
Fabian Mönkeberg

To solve hyperbolic conservation laws we propose to use high-order essentially nonoscillatory methods based on radial basis functions. We introduce an entropy stable arbitrary high-order finite difference method (RBF-TeCNOp) and an entropy stable second order finite volume method (RBF-EFV2) for one-dimensional problems. Thus, we show that methods based on radial basis functions are as powerful as methods based on polynomial reconstruction. The main contribution is the construction of an algorithm and a smoothness indicator that ensures an interpolation function which fulfills the sign-property on general one dimensional grids.


2014 ◽  
Vol 598 ◽  
pp. 409-413 ◽  
Author(s):  
Zakieh Avazzadeh ◽  
Wen Chen ◽  
Vahid Reza Hosseini

In this work, we describe the radial basis functions for solving the time fractional partial differential equations defined by Caputo sense. These problems can be discretized in the time direction based on finite difference scheme and is continuously approximated by using the radial basis functions in the space direction which achieves the semi-discrete solution. Numerical results accuracy the efficiency of the presented method.


Sign in / Sign up

Export Citation Format

Share Document