scholarly journals The Elser nuclei sum revisited

2021 ◽  
Vol vol. 23 no. 1 (Combinatorics) ◽  
Author(s):  
Darij Grinberg

Fix a finite undirected graph $\Gamma$ and a vertex $v$ of $\Gamma$. Let $E$ be the set of edges of $\Gamma$. We call a subset $F$ of $E$ pandemic if each edge of $\Gamma$ has at least one endpoint that can be connected to $v$ by an $F$-path (i.e., a path using edges from $F$ only). In 1984, Elser showed that the sum of $\left(-1\right)^{\left| F\right|}$ over all pandemic subsets $F$ of $E$ is $0$ if $E\neq \varnothing$. We give a simple proof of this result via a sign-reversing involution, and discuss variants, generalizations and refinements, revealing connections to abstract convexity (the notion of an antimatroid) and discrete Morse theory. Comment: 25 pages. Final version (published in DMTCS, 2021). More detailed variants of the text can be found in version 8 (arXiv:2009.11527v8)






2017 ◽  
Vol 208 (9) ◽  
pp. 1353-1367
Author(s):  
A. M. Zhukova ◽  
G. Yu. Panina


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Andrew Sack

We examine enumerating discrete Morse functions on graphs up to equivalence by gradient vector fields and by restrictions on the codomain.  We give formulae for the number of discrete Morse functions on specific classes of graphs (line, cycle, and bouquet of circles).





2019 ◽  
Vol 63 (3) ◽  
pp. 607-623
Author(s):  
Desamparados Fernández-Ternero ◽  
Enrique Macías-Virgós ◽  
Nicholas A. Scoville ◽  
José Antonio Vilches


2010 ◽  
Vol 223 (6) ◽  
pp. 1855-1884 ◽  
Author(s):  
Konstanze Rietsch ◽  
Lauren Williams


2017 ◽  
Vol 57 (4) ◽  
pp. 824-853 ◽  
Author(s):  
Karim A. Adiprasito ◽  
Bruno Benedetti ◽  
Frank H. Lutz


2015 ◽  
Vol 16 (4) ◽  
pp. 875-897 ◽  
Author(s):  
Justin Curry ◽  
Robert Ghrist ◽  
Vidit Nanda


Sign in / Sign up

Export Citation Format

Share Document