scholarly journals Counting and Discrete Morse Theory

2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Andrew Sack

We examine enumerating discrete Morse functions on graphs up to equivalence by gradient vector fields and by restrictions on the codomain.  We give formulae for the number of discrete Morse functions on specific classes of graphs (line, cycle, and bouquet of circles).

Author(s):  
Claudia Landi ◽  
Sara Scaramuccia

AbstractThe combination of persistent homology and discrete Morse theory has proven very effective in visualizing and analyzing big and heterogeneous data. Indeed, topology provides computable and coarse summaries of data independently from specific coordinate systems and does so robustly to noise. Moreover, the geometric content of a discrete gradient vector field is very useful for visualization purposes. The specific case of multivariate data still demands for further investigations, on the one hand, for computational reasons, it is important to reduce the necessary amount of data to be processed. On the other hand, for analysis reasons, the multivariate case requires the detection and interpretation of the possible interdepedance among data components. To this end, in this paper we introduce and study a notion of perfectness for discrete gradient vector fields with respect to multi-parameter persistent homology, called relative-perfectness. As a natural generalization of usual perfectness in Morse theory for homology, relative-perfectness entails having the least number of critical cells relevant for multi-parameter persistence. As a first contribution, we support our definition of relative-perfectness by generalizing Morse inequalities to the filtration structure where homology groups involved are relative with respect to subsequent sublevel sets. In order to allow for an interpretation of critical cells in 2-parameter persistence, our second contribution consists of two inequalities bounding Betti tables of persistence modules from above and below, via the number of critical cells. Our last result is the proof that existing algorithms based on local homotopy expansions allow for efficient computability over simplicial complexes up to dimension 2.


2012 ◽  
Vol 33 (6) ◽  
pp. 1732-1747 ◽  
Author(s):  
JACK S. CALCUT ◽  
ROBERT E. GOMPF

AbstractWe study orbit spaces of generalized gradient vector fields for Morse functions. Typically, these orbit spaces are non-Hausdorff. Nevertheless, they are quite structured topologically and are amenable to study. We show that these orbit spaces are locally contractible. We also show that the quotient map associated to each such orbit space is a weak homotopy equivalence and has the path lifting property.


2001 ◽  
Vol 174 (1) ◽  
pp. 91-100 ◽  
Author(s):  
P. Fortuny ◽  
F. Sanz

Author(s):  
Maciej Starostka

AbstractWe show that there exist two proper gradient vector fields on $$\mathbb {R}^n$$ R n which are homotopic in the category of proper maps but not homotopic in the category of proper gradient maps.


2002 ◽  
Vol 184 (1) ◽  
pp. 215-223 ◽  
Author(s):  
Aleksandra Nowel ◽  
Zbigniew Szafraniec

Sign in / Sign up

Export Citation Format

Share Document