scholarly journals Approximate Formulas for Zeta Functions of Selberg’s Type in Quotients of SL4

The goal of the paper is to derive some approximate formulas for the logarithmic derivative of several zata functions of Selberg’s type for compact symmetric spaces formed as quotients of the Lie group SL4 (R). Such formulas, known in literature as Tutchmarsh-Landau style approximate formulas, are usually applied in order to obtain prime geodesic theorems in various settings of underlying locally symmetric spaces.

2019 ◽  
Vol 69 (2) ◽  
pp. 311-320 ◽  
Author(s):  
Muharem Avdispahić ◽  
Dženan Gušić

Abstract We derive approximate formulas for the logarithmic derivative of the Selberg and the Ruelle zeta functions over compact, even-dimensional, locally symmetric spaces of real rank one. The obtained formulas are given in terms of zeta singularities.


1995 ◽  
Vol 137 ◽  
pp. 33-53 ◽  
Author(s):  
Hiroyuki Tasaki

The theory of integral geometry has mainly treated identities between integral invariants of submanifolds in Riemannian homogeneous spaces like as dμg(g) where M and N are submanifolds in a Riemannian homogeneous spaces of a Lie group G and I(M ∩ gN) is an integral invariant of M ∩ gN. For example Poincaré’s formula is one of typical identities in integral geometry, which is as follows. We denote by M(R2) the identity component of the group of isometries of the plane R2 with a suitable invariant measure μM(R2).


2011 ◽  
Vol 151 (3) ◽  
pp. 421-440 ◽  
Author(s):  
JOACHIM SCHWERMER ◽  
CHRISTOPH WALDNER

AbstractWe study the cohomology of compact locally symmetric spaces attached to arithmetically defined subgroups of the real Lie group G = SU*(2n). Our focus is on constructing totally geodesic cycles which originate with reductive subgroups in G. We prove that these cycles, also called geometric cycles, are non-bounding. Thus this geometric construction yields non-vanishing (co)homology classes.In view of the interpretation of these cohomology groups in terms of automorphic forms, the existence of non-vanishing geometric cycles implies the existence of certain automorphic forms. In the case at hand, we substantiate this close relation between geometry and automorphic theory by discussing the classification of irreducible unitary representations of G with non-zero cohomology in some detail. This permits a comparison between geometric constructions and automorphic forms.


2020 ◽  
Vol 19 ◽  

We obtain precise estimates for the number of singularities of Selberg’s and Ruelle’s zeta functions for compact, higher-dimensional, locally symmetric Riemannian manifolds of strictly negative sectional curvature. The methods applied in this research represent a generalization of the methods described in the case of a compact Riemann surface. In particular, this includes an application of the Phragmen-Lindelof theorem, the variation of the argument of certain zeta functions, as well as the use of some classical analytic number theory techniques.


Sign in / Sign up

Export Citation Format

Share Document