integral invariant
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 3)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Xiaoming Zhang ◽  
Zhenbang Cao ◽  
Jianhua Xie ◽  
Denghui Li ◽  
Celso Grebogi

In this work, we study a class of dissipative, nonsmooth [Formula: see text] degree-of-freedom dynamical systems. As the dissipation is assumed to be proportional to the momentum, the dynamics in such systems is conformally symplectic, allowing us to use some of the Hamiltonian structure. We initially show that there exists an integral invariant of the Poincaré–Cartan type in such systems. Then, we prove the existence of a generalized Liouville Formula for conformally symplectic systems with rigid constraints using the integral invariant. A two degree-of-freedom system is analyzed to support the relevance of our results.





2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Andrei Smilga

The adjoint 2-dimensional QCD with the gauge group SU(N)/Z_NSU(N)/ZN admits topologically nontrivial gauge field configurations associated with nontrivial \pi_1[SU(N)/Z_N] = Z_Nπ1[SU(N)/ZN]=ZN. The topological sectors are labelled by an integer k=0,\ldots, N-1k=0,…,N−1. However, in contrast to QED_2QED2 and QCD_4QCD4, this topology is not associated with an integral invariant like the magnetic flux or Pontryagin index. These instantons may admit fermion zero modes, but there is always an equal number of left-handed and right-handed modes, so that the Atiyah-Singer theorem, which determines in other cases the number of the modes, does not apply. The mod. 2 argument [1] suggests that, for a generic gauge field configuration, there is either a single doublet of such zero modes or no modes whatsoever. However, the known solution of the Dirac problem for a wide class of gauge field configurations indicates the presence of k(N-k) zero mode doublets in the topological sector k. In this note, we demonstrate in an explicit way that these modes are not robust under a generic enough deformation of the gauge background and confirm thereby the conjecture of Ref. [1]. The implications for the physics of this theory (screening vs. confinement issue) are briefly discussed.



2020 ◽  
Vol 496 (3) ◽  
pp. 2946-2961
Author(s):  
Chen Deng ◽  
Xin Wu ◽  
Enwei Liang

ABSTRACT A Kepler solver is an analytical method used to solve a two-body problem. In this paper, we propose a new correction method by slightly modifying the Kepler solver. The only change to the analytical solutions is that the obtainment of the eccentric anomaly relies on the true anomaly that is associated with a unit radial vector calculated by an integrator. This scheme rigorously conserves all integrals and orbital elements except the mean longitude. However, the Kepler energy, angular momentum vector, and Laplace–Runge–Lenz vector for perturbed Kepler problems are slowly varying quantities. However, their integral invariant relations give the quantities high-precision values that directly govern five slowly varying orbital elements. These elements combined with the eccentric anomaly determine the desired numerical solutions. The newly proposed method can considerably reduce various errors for a post-Newtonian two-body problem compared with an uncorrected integrator, making it suitable for a dissipative two-body problem. Spurious secular changes of some elements or quasi-integrals in the outer Solar system may be caused by short integration times of the fourth-order Runge–Kutta algorithm. However, they can be eliminated in a long integration time of 108 yr by the proposed method, similar to Wisdom–Holman second-order symplectic integrator. The proposed method has an advantage over the symplectic algorithm in the accuracy but gives a larger slope to the phase error growth.



2018 ◽  
Vol 63 (13) ◽  
pp. 135015 ◽  
Author(s):  
Shaojie Tang ◽  
Kuidong Huang ◽  
Yunyong Cheng ◽  
Xuanqin Mou ◽  
Xiangyang Tang


2016 ◽  
Vol 113 (8) ◽  
pp. 2035-2040 ◽  
Author(s):  
Alberto Enciso ◽  
Daniel Peralta-Salas ◽  
Francisco Torres de Lizaur

We prove that any regular integral invariant of volume-preserving transformations is equivalent to the helicity. Specifically, given a functional ℐ defined on exact divergence-free vector fields of class C1 on a compact 3-manifold that is associated with a well-behaved integral kernel, we prove that ℐ is invariant under arbitrary volume-preserving diffeomorphisms if and only if it is a function of the helicity.



2015 ◽  
Vol 8 (9) ◽  
pp. 2967-2975 ◽  
Author(s):  
K. Konstantinidis ◽  
T. Sarris

Abstract. The integral invariant coordinate I and Roederer's L or L* are proxies for the second and third adiabatic invariants, respectively, that characterize charged particle motion in a magnetic field. Their usefulness lies in the fact that they are expressed in more instructive ways than their counterparts: I is equivalent to the path length of the particle motion between two mirror points, whereas L*, although dimensionless, is equivalent to the distance from the center of the Earth to the equatorial point of a given field line, in units of Earth radii, in the simplified case of a dipole magnetic field. However, care should be taken when calculating the above invariants, as the assumption of their conservation is not valid everywhere in the Earth's magnetosphere. This is not clearly stated in state-of-the-art models that are widely used for the calculation of these invariants. The purpose of this work is thus to investigate where in the near-Earth magnetosphere we can safely calculate I and L* with tools with widespread use in the field of space physics, for various magnetospheric conditions and particle initial conditions. More particularly, in this paper we compare the values of I and L* as calculated using LANL*, an artificial neural network developed at the Los Alamos National Laboratory, SPENVIS, a space environment online tool, IRBEM, a software library dedicated to radiation belt modeling, and ptr3D, a 3-D particle tracing code that was developed for this study. We then attempt to quantify the variations between the calculations of I and L* of those models. The deviation between the results given by the models depends on particle initial position, pitch angle and magnetospheric conditions. Using the ptr3D v2.0 particle tracer we map the areas in the Earth's magnetosphere where I and L* can be assumed to be conserved by monitoring the constancy of I for energetic protons propagating forwards and backwards in time. These areas are found to be centered on the noon area, and their size also depends on particle initial position, pitch angle and magnetospheric conditions.



Author(s):  
M. V. Berry ◽  
Pragya Shukla

Newtonian forces depending only on position but which are non-conservative, i.e. whose curl is not zero, are termed ‘curl forces’. They are non-dissipative, but cannot be generated by a Hamiltonian of the familiar isotropic kinetic energy + scalar potential type. Nevertheless, a large class of such non-conservative forces (though not all) can be generated from Hamiltonians of a special type, in which kinetic energy is an anisotropic quadratic function of momentum. Examples include all linear curl forces, some azimuthal and radial forces, and some shear forces. Included are forces exerted on electrons in semiconductors, and on small particles by monochromatic light near an optical vortex. Curl forces imply restrictions on the geometry of periodic orbits, and non-conservation of Poincaré's integral invariant. Some fundamental questions remain, for example: how does curl dynamics generated by a Hamiltonian differ from dynamics under curl forces that are not Hamiltonian?



2015 ◽  
Vol 67 (1) ◽  
pp. 152-183 ◽  
Author(s):  
Christine Lescop

AbstractCombings of compact, oriented, 3-dimensional manifoldsMare homotopy classes of nowhere vanishing vector fields. The Euler class of the normal bundle is an invariant of the combing, and it only depends on the underlying Spinc-structure. A combing is called torsion if this Euler class is a torsion element of H2(M; Z). Gompf introduced a Q-valued invariant θGof torsion combings on closed 3-manifolds, and he showed that θGdistinguishes all torsion combings with the same Spinc-structure. We give an alternative definition for θGand we express its variation as a linking number. We define a similar invariantp1of combings for manifolds bounded by S2. We relate p1 to the Θ-invariant, which is the simplest configuration space integral invariant of rational homology 3-balls, by the formula Θ = ¼P1+ 6λ, where λ is the Casson-Walker invariant. The article also includes a self-contained presentation of combings for 3-manifolds.



Sign in / Sign up

Export Citation Format

Share Document