Meta-Analysis of Productivity and Typical Structural and Semantic Patterns of Contamination in Modern English: the State of the Art and Avenues for Futher Investigation

Author(s):  
N.A. Lavrova ◽  
E.F. Botova
2021 ◽  
Vol 3 ◽  
Author(s):  
Lin Wang ◽  
Hristijan Gjoreski ◽  
Mathias Ciliberto ◽  
Paula Lago ◽  
Kazuya Murao ◽  
...  

The Sussex-Huawei Locomotion-Transportation (SHL) Recognition Challenges aim to advance and capture the state-of-the-art in locomotion and transportation mode recognition from smartphone motion (inertial) sensors. The goal of this series of machine learning and data science challenges was to recognize eight locomotion and transportation activities (Still, Walk, Run, Bus, Car, Train, Subway). The three challenges focused on time-independent (SHL 2018), position-independent (SHL 2019) and user-independent (SHL 2020) evaluations, respectively. Overall, we received 48 submissions (out of 93 teams who registered interest) involving 201 scientists over the three years. The survey captures the state-of-the-art through a meta-analysis of the contributions to the three challenges, including approaches, recognition performance, computational requirements, software tools and frameworks used. It was shown that state-of-the-art methods can distinguish with relative ease most modes of transportation, although the differentiating between subtly distinct activities, such as rail transport (Train and Subway) and road transport (Bus and Car) still remains challenging. We summarize insightful methods from participants that could be employed to address practical challenges of transportation mode recognition, for instance, to tackle over-fitting, to employ robust representations, to exploit data augmentation, and to exploit smart post-processing techniques to improve performance. Finally, we present baseline results to compare the three challenges with a unified recognition pipeline and decision window length.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


2003 ◽  
Vol 48 (6) ◽  
pp. 826-829 ◽  
Author(s):  
Eric Amsel
Keyword(s):  

1968 ◽  
Vol 13 (9) ◽  
pp. 479-480
Author(s):  
LEWIS PETRINOVICH
Keyword(s):  

1984 ◽  
Vol 29 (5) ◽  
pp. 426-428
Author(s):  
Anthony R. D'Augelli

1991 ◽  
Vol 36 (2) ◽  
pp. 140-140
Author(s):  
John A. Corson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document