Orthogonal polynomials and generalized Gauss-Rys quadrature formulae
Orthogonal polynomials and the corresponding quadrature formulas of Gaussian type concerni λ ng > the 1 e / v 2 en wei x gh > t f 0 unction ω(t; x) = exp λ (−= xt 1 2) / ( 2 1 − t2)−1/2 on (−1, 1), with parameters − and , are considered. For these quadrature rules reduce to the socalled Gauss-Rys quadrature formulas, which were investigated earlier by several authors, e.g., Dupuis at al 1976 and 1983; Sagar 1992; Schwenke 2014; Shizgal 2015; King 2016; Milovanovic ´ 2018, etc. In this generalized case, the method of modified moments is used, as well as a transformation of quadratures on (−1, 1) with N nodes to ones on (0, 1) with only (N + 1)/2 nodes. Such an approach provides a stable and very efficient numerical construction.