equidistant nodes
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 24 (2) ◽  
pp. 59-67
Author(s):  
Helii A. Sheludko ◽  
◽  
Serhii V. Ugrimov ◽  

An adaptive approach to the numerical differentiation of difficult-to-compute functions is considered. Complex dependencies, which are the result of multiple superpositions of functions or the product of various algorithmic processes, are knowingly difficult to study directly. To establish the nature of the behavior of such dependencies, one has to resort to numerical analysis. One of the important characteristics of functions is a derivative, which indicates the direction and rate of change of a dependence. However, with difficult-to-compute functions, the available a priori information is not always sufficient to achieve the appropriate accuracy of the solution by known means. The loss of accuracy occurs due to the accumulation of round-off errors that grow in proportion to the number of calculated values of a function. In this case, it is necessary to pass on to the posterior approach in order to determine the behavior of the function and move away from the scheme of equidistant nodes, relying on an adaptive way of studying the local situation in the domain of the function. This paper implements an adaptive method for finding derivatives of a function with a minimum of restrictive requirements for the class of functions and the form of their assignment. Due to this, the costs of calculating the function have been significantly reduced with the result that their number has been brought to almost the optimal level. At the same time, the amount of RAM used has sharply decreased. There is no need for a preliminary analysis of the problem of establishing the class of the function under study, in the involvement of special functions or transformation of initial conditions for using standard tables of weight coefficients, etc. For research, it is enough to assign a continuous and bounded function on a fixed segment and a minimum step, which is indirectly responsible for ensuring the required accuracy of differentiation. The effectiveness of the proposed method is demonstrated on a number of test examples. The developed method can be used in more complex problems, for example, in solving some types of differential and integral equations, as well as for a wide range of optimization problems in a wide variety of areas of applied analysis and synthesis.


Author(s):  
Ali IBRAHIMOGLU

Polynomial interpolation with equidistant nodes is notoriously unreliable due to the Runge phenomenon, and is also numerically ill-conditioned. By taking advantage of the optimality of the interpolation processes on Chebyshev nodes, one of the best strategies to defeat the Runge phenomenon is to use the mock-Chebyshev points, which are selected from a satisfactory uniform grid, for polynomial interpolation. Yet, little literature exists on the computation of these points. In this study, we investigate the properties of the mock-Chebyshev nodes and propose a subsetting method for constructing mock-Chebyshev grids. Moreover, we provide a precise formula for the cardinality of a satisfactory uniform grid. Some numerical experiments using the points obtained by the method are given to show the effectiveness of the proposed method and numerical results are also provided.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Bowen Li ◽  
Jieyu Ding ◽  
Yanan Li

An L-stable method over time intervals for differential-algebraic equations (DAEs) of multibody system dynamics is presented in this paper. The solution format is established based on equidistant nodes and nonequidistant nodes such as Chebyshev nodes and Legendre nodes. Based on Ehle’s theorem and conjecture, the unknown matrix and vector in the L-stable solution formula are obtained by comparison with Pade approximation. Newton iteration method is used during the solution process. Taking the planar two-link manipulator system as an example, the results of L-stable method presented are compared for different number of nodes in the time interval and the step size in the simulation, and also compared with the classic Runge-Kutta method, A-stable method, Radau IA, Radau IIA, and Lobatto IIIC methods. The results show that the method has the advantages of good stability and high precision and is suitable for multibody system dynamics simulation under long-term conditions.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. T87-T101 ◽  
Author(s):  
Weijuan Meng ◽  
Li-Yun Fu

The discontinuous Galerkin method (DGM) has been applied to investigate seismic wave propagation recently. However, few studies have examined the dispersion property of DGM with different basis functions. Therefore, three common basis functions, Legendre polynomial, Lagrange polynomial with equidistant nodes, and Lagrange polynomial with Gauss-Lobatto-Legendre (GLL) nodes, are used for numerical approximation. The numerical dispersion and anisotropy numerical behavior of acoustic and elastic waves are compared, and the numerical errors of different order methods are analyzed. The result shows that the dispersion errors for all basis functions reduce generally with increasing interpolation orders, but with large differences in different directions. Specifically, the Legendre basis function and Lagrange basis function with GLL nodes have attractive advantages over the Lagrange polynomial with equidistant nodes for numerical computation. We verified the dispersion properties by theoretical and numerical analyses.


2017 ◽  
Vol 77 (2) ◽  
pp. 327-359
Author(s):  
Adhemar Bultheel ◽  
Juan Carlos Santos-León

2016 ◽  
Vol 59 ◽  
pp. 71-78 ◽  
Author(s):  
Chongyang Deng ◽  
Shankui Zhang ◽  
Yajuan Li ◽  
Wenbiao Jin ◽  
Yi Zhao

Sign in / Sign up

Export Citation Format

Share Document