scholarly journals Crystal structure, Hirshfeld surface, and DFT studies of 4-((pyrrolidin-1-ylsulfonyl)methyl)aniline

2021 ◽  
Vol 12 (4) ◽  
pp. 419-431
Author(s):  
Soundararajan Krishnan ◽  
Thanigaimani Kaliyaperumal ◽  
Ramalingam Marimuthu ◽  
Sethuraman Velusamy

The crystal structure investigation of the title compound 4-((pyrrolidin-1-ylsulfonyl) methyl)aniline (PSMA) C11H16N2O2S shows that the molecule is essentially coplanar with a dihedral angle of 26.70(14)°between the pyrrolidine and the benzene rings. A pair of strong N-H···O hydrogen bonds produces continuous two-dimensional sheets with R22(18) ring motifs. The crystal structure also features a weak C-H···π interaction resulting in a three-dimensional network. Density functional theory (DFT) calculations reveal that the experimental and calculated geometric parameters of the molecule are nearly the same. Hirshfeld surface analysis has been carried out to study the various intermolecular interactions responsible for the crystal packing. Theoretical calculations indicate an excellent correlation between the experimental and the simulated UV spectra.

Author(s):  
Ballo Daouda ◽  
Nanou Tiéba Tuo ◽  
Tuncer Hökelek ◽  
Kangah Niameke Jean-Baptiste ◽  
Kodjo Charles Guillaume ◽  
...  

The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl...NPrmdn and N—HPrmdn...OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H...π interactions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (49.0%), H...C/C...H (35.8%) and H...O/O...H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl...NPrmdn and N—HPrmdn...OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Author(s):  
Mohamed Srhir ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Ahmed Moussaif ◽  
Joel T. Mague ◽  
...  

In the title molecule, C12H13N3O2S, the benzothiazine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O—HHydethy...NThz hydrogen bonds and weak C—HImdz...OImdz and C—HBnz...OImdz (Hydethy = hydroxyethyl, Thz = thiazole, Imdz = imidazolidine and Bnz = benzene) interactions, together with C—HImdz...π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] interactions between thiazole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (47.0%), H...O/O...H (16.9%), H...C/C...H (8.0%) and H...S/S...H (7.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—H...N and C—H...O hydrogen-bond energies are 68.5 (for O—HHydethy...NThz), 60.1 (for C—HBnz...OImdz) and 41.8 kJ mol−1 (for C—HImdz...OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state.


2018 ◽  
Vol 74 (11) ◽  
pp. 1589-1594 ◽  
Author(s):  
Muhamad Fikri Zaini ◽  
Ibrahim Abdul Razak ◽  
Wan Mohd Khairul ◽  
Suhana Arshad

The asymmetric unit of the title compound, 2C17H12N2O3·H2O comprises two molecules of (E)-3-(1H-indol-2-yl)-1-(4-nitrophenyl)prop-2-en-1-one and a water molecule. The main molecule adopts an s-cis configuration with respect to the C=O and C=C bonds. The dihedral angle between the indole ring system and the nitro-substituted benzene ring is 37.64 (16)°. In the crystal, molecules are linked by O—-H...O and N—H...O hydrogen bonds, forming chains along [010]. In addition, weak C—H...O, C—H...π and π–π interactions further link the structure into a three-dimensional network. The optimized structure was generated theoretically via a density functional theory (DFT) approach at the B3LYP/6–311 G++(d,p) basis level and the HOMO–LUMO behaviour was elucidated to determine the energy gap. The obtained values of 2.70 eV (experimental) and 2.80 eV (DFT) are desirable for optoelectronic applications. The intermolecular interactions were quantified and analysed using Hirshfeld surface analysis.


2019 ◽  
Vol 75 (10) ◽  
pp. 1411-1417
Author(s):  
Sonia Hayani ◽  
Yassir Filali Baba ◽  
Tuncer Hökelek ◽  
Fouad Ouazzani Chahdi ◽  
Joel T. Mague ◽  
...  

The title compound, C15H12ClNO3, consists of a 1,2-dihydroquinoline-4-carboxylate unit with 2-chloroethyl and propynyl substituents, where the quinoline moiety is almost planar and the propynyl substituent is nearly perpendicular to its mean plane. In the crystal, the molecules form zigzag stacks along the a-axis direction through slightly offset π-stacking interactions between inversion-related quinoline moieties which are tied together by intermolecular C—HPrpnyl...OCarbx and C—HChlethy...OCarbx (Prpnyl = propynyl, Carbx = carboxylate and Chlethy = chloroethyl) hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (29.9%), H...O/O...H (21.4%), H...C/C... H (19.4%), H...Cl/Cl...H (16.3%) and C...C (8.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPrpnyl...OCarbx and C—HChlethy...OCarbx hydrogen bond energies are 67.1 and 61.7 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


2019 ◽  
Vol 75 (11) ◽  
pp. 1672-1678
Author(s):  
Mouad Filali ◽  
Lhoussaine El Ghayati ◽  
Tuncer Hökelek ◽  
Joel T. Mague ◽  
Abdessalam Ben-Tama ◽  
...  

The title compound, C22H16N4O2, contains two pyridine rings and one methoxycarbonylphenyl group attached to a pyridazine ring which deviates very slightly from planarity. In the crystal, ribbons consisting of inversion-related chains of molecules extending along the a-axis direction are formed by C—HMthy...OCarbx (Mthy = methyl and Carbx = carboxylate) hydrogen bonds. The ribbons are connected into layers parallel to the bc plane by C—HBnz...π(ring) (Bnz = benzene) interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (39.7%), H...C/C...H (27.5%), H...N/N...H (15.5%) and O...H/H...O (11.1%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HMthy...OCarbx hydrogen-bond energies are 62.0 and 34.3 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Author(s):  
Abdelmaoujoud Taia ◽  
Mohamed Essaber ◽  
Tuncer Hökelek ◽  
Abdeljalil Aatif ◽  
Joel T. Mague ◽  
...  

The asymmetric unit of the title compound, C23H28O4, comprises two half-molecules, with the other half of each molecule being completed by the application of twofold rotation symmetry. The two completed molecules both have a V-shaped appearance but differ in their conformations. In the crystal, each independent molecule forms chains extending parallel to the b axis with its symmetry-related counterparts through C—H...π(ring) interactions. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (65.4%), H...C/C...H (21.8%) and H...O/O...H (12.3%) interactions. Optimized structures using density functional theory (DFT) at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structures in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Author(s):  
Angel D. Herrera-España ◽  
Jesús Aguilera-González ◽  
Gonzalo J. Mena-Rejón ◽  
Simón Hernández-Ortega ◽  
David Cáceres-Castillo

Two crystallographically independent molecules (A and B) are present in the asymmetric unit of the title compound, C11H9IN2OS, which differ mainly in the dihedral angle between the phenyl and thiazole rings [38.94 (16) and 32.12 (15)°, respectively]. In the crystal, the molecules form ...A...B...A...B... chains along the [001] and [010] directions through moderate N—H...O hydrogen bonds and C—H...π interactions, respectively. The overall three-dimensional network is formed by I...I and I...S interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...C/C...H (26.2%), H...H (20.9%), H...I/I...H (19.4%) and H...O/O...H (6.8%) interactions.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Gunay Z. Mammadova ◽  
Sixberth Mlowe

In the cation of the title salt, C30H28NO2 +·CF3O3S−, the four tetrahydrofuran rings adopt envelope conformations. In the crystal, pairs of cations are linked by dimeric C—H...O hydrogen bonds, forming two R 2 2(6) ring motifs parallel to the (001) plane. The cations and anions are connected by further C—H...O hydrogen bonds, forming a three-dimensional network structure. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (47.6%), C...H/H...C (20.6%), O...H/H...O (18.0%) and F...H/H...F (9.9%) interactions.


2020 ◽  
Vol 76 (12) ◽  
pp. 1827-1831
Author(s):  
Elizaveta A. Kvyatkovskaya ◽  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Polina P. Epifanova ◽  
Karina S. Valchuk ◽  
...  

The title compound, C22H33N3O4, crystallizes in the triclinic space group P\overline{1} with two molecules in a unit cell. The two pyrrole rings are essentially planar (r.m.s. deviation = 0.002 Å) and they form a dihedral angle of 81.24 (10)° with each other. The crystal packing is stabilized by C—H...π interactions and π–π stacking interactions, forming a three-dimensional network. The Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that the most important contributions for the crystal packing are from H...H (74.3%), C...H/H...C (11.5%) and O...H/H...O (9.1%) contacts.


Author(s):  
Mohamed Samba ◽  
Mohamed Said Minnih ◽  
Tuncer Hökelek ◽  
Manpreet Kaur ◽  
Jerry P. Jasinski ◽  
...  

The title compound, C17H18N2O3, is constructed from a benzodiazepine ring system linked to a pendant dihydropyran ring, where the benzene and pendant dihydropyran rings are oriented at a dihedral angle of 15.14 (4)°. Intramolecular N—HDiazp...ODhydpand C—HDiazp...ODhydp(Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds link the seven-membered diazepine ring to the pendant dihydropyran ring, enclosingS(6) ring motifs. In the crystal, N—HDiazp...ODhydphydrogen bonds link the molecules into infinite chains along [10\overline{1}]. These chains are further linkedviaC—HBnz...ODhydp, C—HDhydp...ODhydpand C—HMth...ODhydp(Bnz = benzene and Mth = methyl) hydrogen bonds, forming a three-dimensional network. The observed weak C—HDiazp... π interaction may further stabilize the structure. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (51.1%), H...C/C...H (25.3%) and H...O/O...H (20.3%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing.


Sign in / Sign up

Export Citation Format

Share Document