scholarly journals Estimating smooth and sparse neural receptive fields with a flexible spline basis

Author(s):  
Ziwei Huang ◽  
Yanli Ran ◽  
Jonathan Oesterle ◽  
Thomas Euler ◽  
Philipp Berens
2021 ◽  
Author(s):  
Ziwei Huang ◽  
Yanli Ran ◽  
Thomas Euler ◽  
Philipp Berens

Spatio-temporal receptive field (STRF) models are frequently used to approximate the computation implemented by a sensory neuron. Typically, such STRFs are assumed to be smooth and sparse. Current state-of-the-art approaches for estimating STRFs based empirical Bayes estimation encode such prior knowledge into a prior covariance matrix, whose hyperparameters are learned from the data, and thus provide STRF estimates with the desired properties even with little or noisy data. However, empirical Bayes methods are often not computationally efficient in high-dimensional settings, as encountered in sensory neuroscience. Here we pursued an alternative approach and encode prior knowledge for estimation of STRFs by choosing a set of basis function with the desired properties: a natural cubic spline basis. Our method is computationally efficient, and can be easily applied to Linear-Gaussian and Linear-Nonlinear-Poisson models as well as more complicated Linear-Nonlinear-Linear-Nonlinear cascade model or spike-triggered clustering methods. We compared the performance of spline-based methods to no-spline ones on simulated and experimental data, showing that spline-based methods consistently outperformed the no-spline versions.


Author(s):  
Caroline A. Miller ◽  
Laura L. Bruce

The first visual cortical axons arrive in the cat superior colliculus by the time of birth. Adultlike receptive fields develop slowly over several weeks following birth. The developing cortical axons go through a sequence of changes before acquiring their adultlike morphology and function. To determine how these axons interact with neurons in the colliculus, cortico-collicular axons were labeled with biocytin (an anterograde neuronal tracer) and studied with electron microscopy.Deeply anesthetized animals received 200-500 nl injections of biocytin (Sigma; 5% in phosphate buffer) in the lateral suprasylvian visual cortical area. After a 24 hr survival time, the animals were deeply anesthetized and perfused with 0.9% phosphate buffered saline followed by fixation with a solution of 1.25% glutaraldehyde and 1.0% paraformaldehyde in 0.1M phosphate buffer. The brain was sectioned transversely on a vibratome at 50 μm. The tissue was processed immediately to visualize the biocytin.


Author(s):  
Berit Brogaard

Despite the recent surge in research on, and interest in, synesthesia, the mechanism underlying this condition is still unknown. Feedforward mechanisms involving overlapping receptive fields of sensory neurons as well as feedback mechanisms involving a lack of signal disinhibition have been proposed. Here I show that a broad range of studies of developmental synesthesia indicate that the mechanism underlying the phenomenon may in some cases involve the reinstatement of brain activity in sensory or cognitive streams in a way that is similar to what happens during memory retrieval of semantically associated items. In the chapter’s final sections I look at the relevance of synesthesia research, given the memory model, to our understanding of multisensory perception and common mapping patterns.


Sign in / Sign up

Export Citation Format

Share Document