scholarly journals A note on the convergence of moments and the martingale central limit theorem

Author(s):  
Esko Valkeila
2011 ◽  
Vol 48 (04) ◽  
pp. 1189-1196 ◽  
Author(s):  
Qunqiang Feng ◽  
Zhishui Hu

We investigate the Zagreb index, one of the topological indices, of random recursive trees in this paper. Through a recurrence equation, the first two moments ofZn, the Zagreb index of a random recursive tree of sizen, are obtained. We also show that the random process {Zn− E[Zn],n≥ 1} is a martingale. Then the asymptotic normality of the Zagreb index of a random recursive tree is given by an application of the martingale central limit theorem. Finally, two other topological indices are also discussed in passing.


1978 ◽  
Vol 18 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Robert J. Adler

We obtain sufficient conditions for the convergence of martingale triangular arrays to infinitely divisible laws with finite variances, without making the usual assumptions of uniform asymptotic negligibility. Our results generalise known results for both the martingale case under a negligibility assumption and the classical (independence) case without such assumptions.


2014 ◽  
Vol 51 (04) ◽  
pp. 1051-1064
Author(s):  
Hoang-Chuong Lam

The main aim of this paper is to prove the quenched central limit theorem for reversible random walks in a stationary random environment on Z without having the integrability condition on the conductance and without using any martingale. The method shown here is particularly simple and was introduced by Depauw and Derrien [3]. More precisely, for a given realization ω of the environment, we consider the Poisson equation (P ω - I)g = f, and then use the pointwise ergodic theorem in [8] to treat the limit of solutions and then the central limit theorem will be established by the convergence of moments. In particular, there is an analogue to a Markov process with discrete space and the diffusion in a stationary random environment.


Sign in / Sign up

Export Citation Format

Share Document