integrability condition
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 25)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 34 ◽  
pp. 11-17
Author(s):  
V.D. Gladush

Some properties of the configuration space (CS) of charged black holes (BH) we are considered. A reduced action for the spherically symmetric configuration of the gravitational and electromagnetic fields is constructed. We restrict ourselves to considering of T-region, where the studied fields have a dynamic meaning. Using the Hamiltonian constraint, we exclude the nondynamic degree of freedom. This leads to the action of the system in the CS with the corresponding supermetric. It turns out that the CS is flat, and its metric admits a twoparametric group of motions. This group generates conservation laws for the geodesic equations. The first law is the charge conservation law, and second is the mass conservation law (the mass function). Using the Hamiltonian constraint, they allow one to find momenta as a function of the field variables andcalculate the action as a function of the conserved quantities and field variables in CS. We emphasize that to find this  action, we use only the integrability condition for a differential form. The quantization of the system is reduced to the  uantization of a free particle in a three-dimensional pseudo-Euclidean space. The natural measure corresponding to the CS metric is used to construct the Hermitian DeWitt and mass operators. Based on the self-consistent solution of quantum  DeWitt equations and equations for the eigenvalues of the mass and charge operators, the wave function for the spherically  symmetric configuration of the gravitational and electromagnetic fields in the T- region is constructed. As a result, we get a model of charged BH with continuous mass and charge spectra.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Joel Acosta ◽  
Alan Garbarz ◽  
Andrés Goya ◽  
Mauricio Leston

Abstract We continue the study of the one-loop partition function of AdS3 gravity with focus on the square-integrability condition on the fluctuating fields. In a previous work we found that the Brown-Henneaux boundary conditions follow directly from the L2 condition. Here we rederive the partition function as a ratio of Laplacian determinants by performing a suitable decomposition of the metric fluctuations. We pay special attention to the asymptotics of the fields appearing in the partition function. We also show that in the usual computation using ghost fields for the de Donder gauge, such gauge condition is accessible precisely for square-integrable ghost fields. Finally, we compute the spectrum of the relevant Laplacians in thermal AdS3, in particular noticing that there are no isolated eigenvalues, only essential spectrum. This last result supports the analytic continuation approach of David, Gaberdiel and Gopakumar. The purely essential spectra found are consistent with the independent results of Lee and Delay of the essential spectrum of the TT rank-2 tensor Lichnerowickz Laplacian on asymptotically hyperbolic spaces.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1539
Author(s):  
Sfundo C. Gumede ◽  
Keshlan S. Govinder ◽  
Sunil D. Maharaj

A single master equation governs the behaviour of shear-free neutral perfect fluid distributions arising in gravity theories. In this paper, we study the integrability of yxx=f(x)y2, find new solutions, and generate a new first integral. The first integral is subject to an integrability condition which is an integral equation which restricts the function f(x). We find that the integrability condition can be written as a third order differential equation whose solution can be expressed in terms of elementary functions and elliptic integrals. The solution of the integrability condition is generally given parametrically. A particular form of f(x)∼1x51−1x−15/7 which corresponds to repeated roots of a cubic equation is given explicitly, which is a new result. Our investigation demonstrates that complexity of a self-gravitating shear-free fluid is related to the existence of a first integral, and this may be extendable to general matter distributions.


2021 ◽  
Vol 111 (4) ◽  
Author(s):  
Alexey Basalaev ◽  
Claus Hertling

AbstractF-manifolds are complex manifolds with a multiplication with unit on the holomorphic tangent bundle with a certain integrability condition. Here, the local classification of 3-dimensional F-manifolds with or without Euler fields is pursued.


2021 ◽  
Vol 82 (7) ◽  
pp. 1233-1247
Author(s):  
A. I. Glushchenko ◽  
V. A. Petrov ◽  
K. A. Lastochkin

2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Nils Andersson ◽  
Gregory L. Comer

AbstractThe relativistic fluid is a highly successful model used to describe the dynamics of many-particle systems moving at high velocities and/or in strong gravity. It takes as input physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process—e.g., drawing on astrophysical observations—an understanding of relativistic features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as “small” as colliding heavy ions in laboratory experiments, and as large as the Universe itself, with “intermediate” sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multi-) fluid model. We focus on the variational principle approach championed by Brandon Carter and collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the “standard” text-book derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an “integrability” condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion) interesting and relevant applications of the general theory. The formalism provides a foundation for complex models, e.g., including electromagnetism, superfluidity and elasticity—all of which are relevant for state of the art neutron-star modelling.


Author(s):  
Henrique Bursztyn ◽  
Inocencio Ortiz ◽  
Stefan Waldmann

Abstract We extend the notion of Morita equivalence of Poisson manifolds to the setting of formal Poisson structures, that is, formal power series of bivector fields $\pi =\pi _0 + \lambda \pi _1 +\cdots $ satisfying the Poisson integrability condition $[\pi ,\pi ]=0$. Our main result gives a complete description of Morita equivalent formal Poisson structures deforming the zero structure ($\pi _0=0$) in terms of $B$-field transformations, relying on a general study of formal deformations of Poisson morphisms and dual pairs. Combined with previous work on Morita equivalence of star products [ 5], our results link the notions of Morita equivalence in Poisson geometry and noncommutative algebra via deformation quantization.


2021 ◽  
Vol 58 (1) ◽  
pp. 128-139
Author(s):  
H. Leman ◽  
J. C. Pardo

AbstractWe are interested in the property of coming down from infinity of continuous-state branching processes with competition in a Lévy environment. We first study the event of extinction for such a family of processes under Grey’s condition. Moreover, if we add an integrability condition on the competition mechanism then the process comes down from infinity regardless of the long-time behaviour of the environment.


Author(s):  
Gajendra Singh

In the present paper we have obtained some properties of an almost semi-invariant of a normal almost paracontact manifold. The integrability condition of distributions  have also been discussed. According to these cases normal almost paracontact manifold is categorized and its used to demonstrate that the method presented in this paper is effective.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 25
Author(s):  
Ludmila Petrova

In the present paper, a role of Hamiltonian systems in mathematical and physical formalisms is considered with the help of skew-symmetric differential forms. In classical mechanics the Hamiltonian system is realized from the Euler–Lagrange equation as the integrability condition of the Euler-Lagrange equation and discloses specific features of Lagrange formalism. In the theory of differential equations, the Hamiltonian systems reveals canonical relations that define the integrability conditions of differential equations. The Hamiltonian systems, as a self-independent equations, are an example of dynamic systems that describe a behavior of dynamical systems in phase space. The connection of the Hamiltonian systems with differential equations and dynamical systems point to the fact that dynamical systems can be generated by differential equations. Under the investigation of Hamiltonian systems, in addition to exterior skew-symmetric differential forms it is suggested to use the skew-symmetric differential forms that are defined on a nonintegrable manifolds and possess a nontraditional mathematical apparatus, such as degenerate transformations and transitions from nonintegrable manifold to integral structures.


Sign in / Sign up

Export Citation Format

Share Document