scholarly journals Interconnectivity vs. isolation of prokaryotic communities in European deep-sea mud volcanoes

2012 ◽  
Vol 9 (12) ◽  
pp. 17377-17400
Author(s):  
M. G. Pachiadaki ◽  
K. A. Kormas

Abstract. By exploiting the available data on 16S rRNA gene sequences – spanning over a sampling period of more than 10 yr – retrieved from sediments of the Haakon Mosby mud volcano (HMMV), Gulf of Cadiz (GoC) and eastern Mediterranean (Amsterdam and Kazan mud volcanoes; AMSMV, KZNMV) mud volcanoes/pockmarks, we investigated whether these systems are characterized by high (interconnectivity) or low (isolation) connection degree based on shared bacterial and archaeal phylotypes. We found only two archaeal and two bacterial phylotypes to occur in all three sites and a few more that were found in two of the three sites. Although the number of shared species depends a lot on the analysis depth of each sample, the majority of the common phylotypes were related mostly to cold seep deep-sea habitats, while for some of them their relative abundance was high enough to be considered as key-species for the habitat they were found. As new tools, like next generation sequencing platforms, are more appropriate for revealing greater depth of diversity but also allow sample replication and uniform sampling protocols, and gain wider recognition and usage, future attempts are more realistic now for fully elucidating the degree of specificity in deep-sea mud volcanoes and pockmarks microbial communities.

2013 ◽  
Vol 10 (5) ◽  
pp. 2821-2831 ◽  
Author(s):  
M. G. Pachiadaki ◽  
K. A. Kormas

Abstract. During the past two decades, European cold seep ecosystems have attracted the scientific interest and to date there are several studies which have investigated the community structure and biodiversity of individual sites. In order to gain a better insight into the biology, biodiversity, and biogeography of seep-associated microbial communities along Europe's continental margins, a comparative approach was applied in the present work. By exploiting the publicly available data on 16S rRNA gene sequences retrieved from sediments of the Håkon Mosby mud volcano, Gulf of Cádiz and the eastern Mediterranean mud volcanoes/pockmarks (Anaximander area and Nile Fan), we investigated the prokaryotic biological components connecting these geographically isolated systems. The construction of interaction networks for both archaeal and bacterial shared operational taxonomic units (OTUs) among the different sites, revealed the presence of persistent OTUs, which can be considered as "key-players". One archaeal OTU (HQ588641) belonging to the ANME-3 group and one δ-Proteobacteria (HQ588562) were found in all five investigated areas. Other Archaea OTUs shared between four sites or less, belonged to the ANME-2c, -2a, MBG-D, -B and Thaumarchaeota. All other shared Bacteria belonged to the δ- and γ-Proteobacteria, with the exception of one JS1 affiliate OTU. The distribution of the majority of the shared OTUs seems to be restricted in cold seeps, mud volcanoes and other marine methane-rich environments. Although the investigated sites were connected through a small number of OTUs, these microorganisms hold central ecophysiological roles in these sediments, namely methane- and sulfur-mediated mineralization.


2012 ◽  
Vol 9 (12) ◽  
pp. 18131-18173
Author(s):  
N. Lampadariou ◽  
V. Kalogeropoulou ◽  
K. Sevastou ◽  
K. Keklikoglou ◽  
J. Sarrazin

Abstract. Mud volcanoes are a special type of cold seeps where life is based on chemoautotrophic processes. They are considered as extreme environments and are characterised by unique megafaunal and macrofaunal communities. However, very few studies on mud volcanoes taking into account the smaller meiobenthic communities have been carried out. Two mud volcanoes were explored during the MEDECO cruise (2007) with the Remotely Operated Vehicle (ROV) Victor-6000; Amsterdam, located south of Turkey between 1700 and 2000 m depth (Anaximander mud field) and Napoli, south of Crete, located along the Mediterranean Ridge at about 2000 m depth (Olimpi mud field). The major aim of this study was to describe distributional patterns of meiofaunal communities and nematode assemblages from different seep microhabitats. Meiofaunal taxa and nematode assemblages at both mud volcanoes differed significantly from other Mediterranean sites in terms of standing stocks, dominance and species diversity. Density and biomass values were significantly higher at the seep sites, particularly at Amsterdam. Nematodes, the dominant meiofaunal taxon, displayed deeper penetration vertically into the sediment at the seep areas, indicating that biological rather than physicochemical factors are responsible for their vertical distribution. Patterns of nematode diversity varied, displaying both very high or very low species richness and dominance, depending on the habitat studied. The Lamellibrachia periphery and mussel bed of Napoli exhibited the highest species richness while the reduced sediments of Amsterdam yielded a species-poor nematode community, dominated by two successful species; one belonging to the genus Aponema and the other to the genus Sabatieria. Analysis of β-diversity showed that habitat heterogeneity of mud volcanoes contributed substantially to the total nematode species richness in the eastern Mediterranean Sea. These observations indicate a strong influence of mud volcanoes and cold-seep ecosystems on the meiofaunal communities and nematode assemblages.


2017 ◽  
Vol 474 (1) ◽  
pp. 604-606 ◽  
Author(s):  
R. A. Zhostkov ◽  
A. L. Sobisevich ◽  
E. I. Suetnova

2019 ◽  
Vol 13 (2) ◽  
pp. 107-111
Author(s):  
A. L. Sobisevich ◽  
E. I. Suetnova ◽  
R. A. Zhostkov
Keyword(s):  
Deep Sea ◽  

2013 ◽  
Vol 10 (8) ◽  
pp. 5381-5398 ◽  
Author(s):  
N. Lampadariou ◽  
V. Kalogeropoulou ◽  
K. Sevastou ◽  
K. Keklikoglou ◽  
J. Sarrazin

Abstract. Mud volcanoes are a~special type of cold seeps where life is based on chemoautotrophic processes. They are considered to be extreme environments and are characterized by unique megafaunal and macrofaunal communities. However, very few studies on mud volcanoes taking into account the smaller meiobenthic communities have been carried out. Two mud volcanoes were explored during the MEDECO (MEditerranean Deep-sea ECOsystems) cruise (2007) with the remotely operated vehicle (ROV) Victor-6000: Amsterdam, located south of Turkey between 1700 and 2000 m depth (Anaximander mud field); and Napoli, south of Crete, located along the Mediterranean Ridge at about 2000 m depth (Olimpi mud field). The major aim of this study was to describe distributional patterns of meiofaunal communities and nematode assemblages from different seep microhabitats. Meiofaunal taxa and nematode assemblages at both mud volcanoes differed significantly from other Mediterranean sites in terms of standing stocks, dominance and species diversity. Density and biomass values were significantly higher at the seep sites, particularly at Amsterdam. Patterns of nematode diversity, the dominant meiofaunal taxon, varied, displaying both very high or very low species richness and dominance, depending on the microhabitat studied. The periphery of the Lamellibrachia and bivalve shell microhabitats of Napoli exhibited the highest species richness, while the reduced sediments of Amsterdam yielded a species-poor nematode community dominated by two successful species, one belonging to the genus Aponema and the other to the genus Sabatieria. Analysis of β-diversity showed that microhabitat heterogeneity of mud volcanoes contributed substantially to the total nematode species richness in the eastern Mediterranean Sea. These observations indicate a strong influence of mud volcanoes and cold-seep ecosystems on the meiofaunal communities and nematode assemblages.


Zoosymposia ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 121-134
Author(s):  
JAMES A. BLAKE ◽  
PATRICIA A. RAMEY-BALCI

A new spionid polychaete was discovered in deep-sea sediments in the eastern Mediterranean Sea during an expedition by the Ocean Exploration Trust. Specimens were collected by the E/V Nautilus in August 2012 off Turkey, at a depth of 2216 m on the Anaximander Seamount at the Amsterdam mud volcano site. Cores were taken from sediments covered with microbial mats. The new species belongs to the Pygospiopsis-Atherospio Group, which has unusual neuropodial hooks, modified neurosetae in some anterior setigers, and branchiae in middle body segments that are broad, flattened, and fused to the dorsal lamellae. The new species is assigned to a new genus and species, Aciculaspio anaximanderi n. gen., n. sp., and is unusual in having a reduced setiger 1 lacking notosetae; well-developed pre- and postsetal lamellae that encompass the neurosetae and notosetae; notopodial lamellae free from the branchiae in anterior setigers that become fused and flattened in middle and posterior segments; unidentate hooded hooks in both noto- and neuropodia; neuropodial spines in setigers 4–10; and a pygidium with three anal cirri. Aciculaspio anaximanderi n. gen., n. sp. is the first species in the Atherospio-Pygospiopsis Group collected from a deep-water cold seep habitat.


2014 ◽  
Vol 347 ◽  
pp. 27-42 ◽  
Author(s):  
Miriam Römer ◽  
Heiko Sahling ◽  
Thomas Pape ◽  
Christian dos Santos Ferreira ◽  
Frank Wenzhöfer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document