scholarly journals Crustal structure of Sri Lanka derived from joint inversion of surface wave dispersion and receiver functions using a Bayesian approach

Author(s):  
Jennifer Dreiling ◽  
Frederik Tilmann ◽  
Xiaohui Yuan ◽  
Christian Haberland ◽  
S.W. Mahinda Seneviratne

<p>We study the crustal structure of Sri Lanka by analyzing data from a temporary seismic network deployed in 2016-2017 to shed light on the amalgamation process from the geophysical perspective. Rayleigh wave phase dispersion from ambient noise cross-correlation and receiver functions were jointly inverted using a transdimensional Bayesian approach.</p><p>The Moho depths range between 30 and 40 km, with the thickest crust (38-40 km) beneath the central Highland Complex (HC). The thinnest crust (30-35 km) is found along the west coast, which experienced crustal thinning associated with the formation of the Mannar Basin. Vp/Vs ratios lie within a range of 1.60-1.82 and predominantly favor a felsic composition with intermediate-to-high silica content of the rocks.</p><p>A major intra-crustal (18-27 km), slightly westward dipping (~4.3°) interface with high Vs (~4 km/s) underneath is prominent in the central HC, continuing in the eastern Vijayan Complex (VC). The dipping discontinuity and a low velocity zone in the central Highlands can be related to the HC/VC contact zone and is in agreement with a well-established amalgamation hypothesis of a stepwise collision of the arc fragments, including deep crustal thrusting processes and a transpressional regime along the suture between the HC and VC.</p>

2019 ◽  
Vol 219 (2) ◽  
pp. 1032-1042
Author(s):  
Chao Gao ◽  
Erin Cunningham ◽  
Vedran Lekić

SUMMARY Low-velocity layers within the crust can indicate the presence of melt and lithologic differences with implications for crustal composition and formation. Seismic wave conversions and reverberations across the base of the crust or intracrustal discontinuities, analysed using the receiver function method, can be used to constrain crustal layering. This is commonly accomplished by inverting receiver functions jointly with surface wave dispersion. Recently, the proliferation of model-space search approaches has made this technique a workhorse of crustal seismology. We show that reverberations from shallow layers such as sedimentary basins produce spurious low-velocity zones when inverted for crustal structure with surface wave data of insufficiently high frequency. Therefore, reports of such layers in the literature based on inversions using receiver function data should be re-evaluated. We demonstrate that a simple resonance-removal filter can suppress these effects and yield reliable estimates of crustal structure, and advocate for its use in receiver-function based inversions.


2020 ◽  
Vol 222 (3) ◽  
pp. 1671-1685 ◽  
Author(s):  
Clinton D Koch ◽  
Colton Lynner ◽  
Jonathan Delph ◽  
Susan L Beck ◽  
Anne Meltzer ◽  
...  

SUMMARY The Ecuadorian forearc is a complex region of accreted terranes with a history of large megathrust earthquakes. Most recently, a Mw 7.8 megathrust earthquake ruptured the plate boundary offshore of Pedernales, Ecuador on 16 April 2016. Following this event, an international collaboration arranged by the Instituto Geofisico at the Escuela Politécnica Nacional mobilized a rapid deployment of 65 seismic instruments along the Ecuadorian forearc. We combine this new seismic data set with 14 permanent stations from the Ecuadorian national network to better understand how variations in crustal structure relate to regional seismic hazards along the margin. Here, we present receiver function adaptive common conversion point stacks and a shear velocity model derived from the joint inversion of receiver functions and surface wave dispersion data obtained through ambient noise cross-correlations for the upper 50 km of the forearc. Beneath the forearc crust, we observe an eastward dipping slow velocity anomaly we interpret as subducting oceanic crust, which shallows near the projected centre of the subducting Carnegie Ridge. We also observe a strong shallow positive conversion in the Ecuadorian forearc near the Borbon Basin indicating a major discontinuity at a depth of ∼7 km. This conversion is not ubiquitous and may be the top of the accreted terranes. We also observe significant north–south changes in shear wave velocity. The velocity changes indicate variations in the accreted terranes and may indicate an increased amount of hydration beneath the Manabí Basin. This change in structure also correlates geographically with the southern rupture limit of multiple high magnitude megathrust earthquakes. The earthquake record along the Ecuadorian trench shows that no event with a Mw >7.4 has ruptured south of ∼0.5°S in southern Ecuador or northern Peru. Our observations, along with previous studies, suggest that variations in the forearc crustal structure and subducting oceanic crust may influance the occurrence and spatial distribution of high magnitude seismicity in the region.


2019 ◽  
Vol 24 (1) ◽  
pp. 101-120
Author(s):  
Kajetan Chrapkiewicz ◽  
Monika Wilde-Piórko ◽  
Marcin Polkowski ◽  
Marek Grad

AbstractNon-linear inverse problems arising in seismology are usually addressed either by linearization or by Monte Carlo methods. Neither approach is flawless. The former needs an accurate starting model; the latter is computationally intensive. Both require careful tuning of inversion parameters. An additional challenge is posed by joint inversion of data of different sensitivities and noise levels such as receiver functions and surface wave dispersion curves. We propose a generic workflow that combines advantages of both methods by endowing the linearized approach with an ensemble of homogeneous starting models. It successfully addresses several fundamental issues inherent in a wide range of inverse problems, such as trapping by local minima, exploitation of a priori knowledge, choice of a model depth, proper weighting of data sets characterized by different uncertainties, and credibility of final models. Some of them are tackled with the aid of novel 1D checkerboard tests—an intuitive and feasible addition to the resolution matrix. We applied our workflow to study the south-western margin of the East European Craton. Rayleigh wave phase velocity dispersion and P-wave receiver function data were gathered in the passive seismic experiment “13 BB Star” (2013–2016) in the area of the crust recognized by previous borehole and refraction surveys. Final models of S-wave velocity down to 300 km depth beneath the array are characterized by proximity in the parameter space and very good data fit. The maximum value in the mantle is higher by 0.1–0.2 km/s than reported for other cratons.


Sign in / Sign up

Export Citation Format

Share Document