low velocity
Recently Published Documents


TOTAL DOCUMENTS

5921
(FIVE YEARS 1550)

H-INDEX

105
(FIVE YEARS 16)

2022 ◽  
Vol 216 ◽  
pp. 106967
Author(s):  
Zhenyu Wu ◽  
Lingmin Huang ◽  
Zhongxiang Pan ◽  
Baoming Zhang ◽  
Xudong Hu

2022 ◽  
Vol 171 ◽  
pp. 108720
Author(s):  
Hosein Hasan-nezhad ◽  
Mojtaba Yazdani ◽  
Mohsen Jeddi

2022 ◽  
Author(s):  
Anne M. Hofmeister ◽  
Robert E. Criss ◽  
Everett M. Criss

ABSTRACT Lateral accelerations require lateral forces. We propose that force imbalances in the unique Earth-Moon-Sun system cause large-scale, cooperative tectonic motions. The solar gravitational pull on the Moon, being 2.2× terrestrial pull, causes lunar drift, orbital elongation, and an ~1000 km radial monthly excursion of the Earth-Moon barycenter inside Earth’s mantle. Earth’s spin superimposes an approximately longitudinal 24 h circuit of the barycenter. Because the oscillating barycenter lies 3500–5500 km from the geocenter, Earth’s tangential orbital acceleration and solar pull are imbalanced. Near-surface motions are enabled by a weak low-velocity zone underlying the cold, brittle lithosphere: The thermal states of both layers result from leakage of Earth’s internal radiogenic heat to space. Concomitantly, stress induced by spin cracks the lithosphere in a classic X-pattern, creating mid-ocean ridges and plate segments. The inertial response of our high-spin planet with its low-velocity zone is ~10 cm yr–1 westward drift of the entire lithosphere, which largely dictates plate motions. The thermal profile causes sinking plates to thin and disappear by depths of ~200–660 km, depending on angle and speed. Cyclical stresses are effective agents of failure, thereby adding asymmetry to plate motions. A comparison of rocky planets shows that the presence and longevity of volcanism and tectonism depend on the particular combination of moon size, moon orbital orientation, proximity to the Sun, and rates of body spin and cooling. Earth is the only rocky planet with all the factors needed for plate tectonics.


2022 ◽  
Author(s):  
Junjiang Zhu ◽  
Sanzhong Li ◽  
Huilin Xing ◽  
Changsheng Wang ◽  
Guoming Yang ◽  
...  

ABSTRACT We analyzed 37 large oceanic intraplate earthquakes (M >6). The largest (M >7) are mainly concentrated under the Indian Ocean. Moderate events (6 < M < 7) are sparsely distributed under the Indian Ocean and other oceans where lithospheric ages are between 90 Ma and 20 Ma. Oceanic intraplate events related to mantle plumes or hotspots are rare, though low-velocity anomalies beneath hotspots are a common feature. Tomographic cross sections for Indian Ocean areas with large intraplate earthquakes indicate strong heterogeneity in the mantle. These earthquakes are explained by shallow stress variations caused by a combination of tectonic forces including slab-pull, ridge-push, drag by mantle flow, plume-push, and buoyancy forces as a consequence of low-velocity anomalies in the mantle. Oceanic intraplate seismicity in the Indian Ocean is related to the large-scale, low-velocity anomaly structure around the Ninety East Ridge.


2022 ◽  
pp. 002199832110652
Author(s):  
Rochele Pinto ◽  
Gediminas Monastyreckis ◽  
Hamza Mahmoud Aboelanin ◽  
Vladimir Spacek ◽  
Daiva Zeleniakiene

This article presents the possibility of strength improvement and energy absorption of carbon fibre reinforced polymer composites by matrix modification. In this study, the mechanical properties of bisphenol-A epoxy matrix and carbon fibre reinforced polymer composites were modified with four different wt.% of star-shaped polymer n-butyl methacrylate (P n-BMA) block glycidyl methacrylate (PGMA). The tensile strength of the epoxy with 1 wt.% star-shaped polymer showed 128% increase in comparison to unmodified epoxy samples. Two different wt.% were then used for the modification of carbon fibre-reinforced polymer composite samples. Tensile tests and low-velocity impact tests were conducted for characterising modified samples. Tensile test results performed showed a slight improvement in the tensile strength and modulus of the composite. Low-velocity impact tests showed that addition of 1 wt.% star-shaped polymer additives increase composite energy absorption by 53.85%, compared to pure epoxy composite specimens. Scanning electron microscopy (SEM) analysis of post-impact specimens displays fracture modes and bonding between the matrix and fibre in the composites. These results demonstrate the potential of a novel star-shaped polymer as an additive material for automotive composite parts, where energy absorption is significant.


2022 ◽  
Vol 92 (1) ◽  
pp. 1-11
Author(s):  
Catharina J. Heerema ◽  
Matthieu J.B. Cartigny ◽  
Ricardo Silva Jacinto ◽  
Stephen M. Simmons ◽  
Ronan Apprioual ◽  
...  

ABSTRACT Turbidity currents triggered at river mouths form an important highway for sediment, organic carbon, and nutrients to the deep sea. Consequently, it has been proposed that the deposits of these flood-triggered turbidity currents provide important long-term records of past river floods, continental erosion, and climate. Various depositional models have been suggested to identify river-flood-triggered turbidite deposits, which are largely based on the assumption that a characteristic velocity structure of the flood-triggered turbidity current is preserved as a recognizable vertical grain size trend in their deposits. Four criteria have been proposed for the velocity structure of flood-triggered turbidity currents: prolonged flow duration; a gradual increase in velocity; cyclicity of velocity magnitude; and a low peak velocity. However, very few direct observations of flood-triggered turbidity currents exist to test these proposed velocity structures. Here we present direct measurements from the Var Canyon, offshore Nice in the Mediterranean Sea. An acoustic Doppler current profiler was located 6 km offshore from the river mouth, and provided detailed velocity measurements that can be directly linked to the state of the river. Another mooring, positioned 16 km offshore, showed how this velocity structure evolved down-canyon. Three turbidity currents were measured at these moorings, two of which are associated with river floods. The third event was not linked to a river flood and was most likely triggered by a seabed slope failure. The multi-pulsed and prolonged velocity structure of all three (flood- and landslide-triggered) events is similar at the first mooring, suggesting that it may not be diagnostic of flood triggering. Indeed, the event that was most likely triggered by a slope failure matched the four flood-triggered criteria best, as it had prolonged duration, cyclicity, low velocity, and a gradual onset. Hence, previously assumed velocity-structure criteria used to identify flood-triggered turbidity currents may be produced by other triggers. Next, this study shows how the proximal multi-pulsed velocity structure reorganizes down-canyon to produce a single velocity pulse. Such rapid-onset, single-pulse velocity structure has previously been linked to landslide-triggered events. Flows recorded in this study show amalgamation of multiple velocity pulses leading to shredding of the flood signal, so that the original initiation mechanism is no longer discernible at just 16 km from the river mouth. Recognizing flood-triggered turbidity currents and their deposits may thus be challenging, as similar velocity structures can be formed by different triggers, and this proximal velocity structure can rapidly be lost due to self-organization of the turbidity current.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Hu Zhang ◽  
Jianbo Zang ◽  
Desheng Zhang ◽  
Weidong Shi ◽  
Jiean Shen

Studies on the tip leakage vortex (TLV) are extensive, while studies on the secondary tip leakage vortex (S-TLV) are rare. To advance the understanding of the formation mechanism of the S-TLV, turbulent cavitating flows were numerically investigated using the shear stress transport (SST) turbulence model and the Zwart–Gerber–Belamri cavitation model. The morphology and physical quantity distribution of the S-TLV under two cavitation conditions were compared, and its formation mechanism was analyzed. The results reveal that in the lower cavitation number case, there is a low-velocity zone of circumferential flow near the tip in the back half of the blade. The shear vortices formed by the leakage jet gradually accumulate and concentrate in the low-velocity area, which is one of the main sources of the S-TLV. Meanwhile, the radial jet pushes the vortices on the suction surface to the tip, which mixes with the S-TLV. The flow path formed by the radial jet and the leakage jet is in accordance with the rotation direction of the S-TLV, which promotes the S-TLV’s further development. Under the conditions of a small cavitation number and low flow rate, the circumferential velocity and radial velocity of the fluid near the gap have altered significantly, which is conducive to the formation of the S-TLV.


2022 ◽  
Author(s):  
Giorgia Guma ◽  
Philipp Bucher ◽  
Patrick Letzgus ◽  
Thorsten Lutz ◽  
Roland Wüchner

Abstract. This paper shows high-fidelity Fluid Structure Interaction (FSI) studies applied on the research wind turbine of the WINSENT project. In this project, two research wind turbines are going to be erected in the South of Germany in the WindForS complex terrain test field. The FSI is obtained by coupling the CFD URANS/DES code FLOWer and the multiphysics FEM solver Kratos, in which both beam and shell structural elements can be chosen to model the turbine. The two codes are coupled in both an explicit and an implicit way. The different modelling approaches strongly differ with respect to computational resources and therefore the advantages of their higher accuracy must be correlated with the respective additional computational costs. The presented FSI coupling method has been applied firstly to a single blade model of the turbine under standard uniform inflow conditions. It could be concluded that for such a small turbine, in uniform conditions a beam model is sufficient to correctly build the blade deformations. Afterwards, the aerodynamic complexity has been increased considering the full turbine with turbulent inflow conditions generated from real field data, in both a flat and complex terrains. It is shown that in these cases a higher structural fidelity is necessary. The effects of aeroelasticity are then shown on the phase-averaged blade loads, showing that using the same inflow turbulence, a flat terrain is mostly influenced by the shear, while the complex terrain is mostly affected by low velocity structures generated by the forest. Finally, the impact of aeroelasticity and turbulence on the Damage Equivalent Loading (DEL) is discussed, showing that flexibility is reducing the DEL in case of turbulent inflow, acting as a damper breaking larger cycles into smaller ones.


Sign in / Sign up

Export Citation Format

Share Document