Deep Learning-based Surrogate Models for Water Distribution Systems

Author(s):  
Riccardo Taormina ◽  
Mohammad Ashrafi ◽  
Andres Murillo ◽  
Stefano Galelli

<p><span>Simulation-based optimization is widely used for designing and managing water distribution networks. The process involves the use of accurate computational models, such as EPANET, which represent the physical processes taking place in the water network and reproduce the control logic governing its operations. Unfortunately, running such models requires expensive computations, which, in turn, may hinder the application of simulation-based optimization to large and complex problems. This issue can be overcome by resorting to surrogate models, that is, simplified data-driven models that accurately mimic the behaviours of physical-based models at a fraction of the computational costs. In this work, we explore the potential of Deep Learning Neural Networks (DLNN) for building surrogate models for water distribution systems. Different DLNN architectures, including feed-forward and recurrent neural networks, are trained and validated on datasets generated through EPANET simulations. The DLNN models are then used in lieu of the original EPANET model to speed-up the evaluation of the objective function employed in a simulation-based optimization problem. The effectiveness of the proposed technique is assessed on a realistic case-study involving cyber-attacks on a water network. In particular, the DLNN surrogate models are employed by an evolutionary optimization algorithm that schedules the operations of hydraulic actuators in order to best respond to the attacks and facilitate the recovery process.</span></p>

2021 ◽  
Vol 11 (2) ◽  
pp. 143-150
Author(s):  
E. Vitan ◽  
Anca Hotupan ◽  
Adriana Hadarean

Abstract The performance evaluation of an implemented water distribution network is in tight relation with the choice of adequate measures for water loss reduction. Hence, the consequences of placing the water network in a wrong performance category are bad and will conduct to unreasonably costs or considerable water loss volumes. Therefore, the evaluation of the water network performance level based on both Non-Revenue Water (NRW) and Infrastructure Leakage Index (ILI) indicators is to be recommended. This paper deals with the performance evaluation of water distribution systems based on the calculated performance indicators NRW and ILI. For this purpose, collected data for a period of one year from 12 Romanian small water distribution systems and two simplified average pressure determination methods were used.


Sign in / Sign up

Export Citation Format

Share Document