Relative sea level change during MIS 3: a black hole in the world. New observations from Calabria, central Mediterranean sea

Author(s):  
Fabrizio Antonioli ◽  
Lucio Calcagnile ◽  
Luigi Ferranti ◽  
Giuseppe Mastronuzzi ◽  
Carmelo Monaco ◽  
...  

<p>Estimates of global ice volume during MIS 3 (60-29 ka) can be constrained between -25 and -87 m (Shackleton, 2000; Waelbroeck et al., 2002; Clark et al., 2009; Hughes et al., 2013; Grant et al., 2014). As regards the maximum altitude reached during this period there are few observed data for a comparison between the global curves and the variations due to different rheostay of the mantle in coastal areas. Uncertainties on the rheostatic behaviour near- or far-fields from the ice bulk during cold period, make it very difficult to estimate the local sea level during MIS 3. Several factors make investigations of  MIS 3 sea level difficult: i) the areas where suitable coastal sediments formed are currently submerged at depths of few tens of meters below present sea level; ii) the preservation of geomorphic features and sedimentary records is limited due to the erosion occurred during the Last Glacial Maximum (LGM) with sea level at depth of -130m, followed by marine transgression that determined  the development of ravinement surfaces).</p><p>Few data were observed worldwide, especially when tectonics or GIA in the near field leads to uplifts. Our research aims to point out what has been published globally and in the Mediterranean, but, above all, to illustrate the sections of new outcrops in Cannitello (Calabria, Italy) where we have found and dated fossiliferous marine pocket beaches deposited on uplifted bed metamorphic rock. Radiocarbon ages of marine shells (about 43 kyrs cal BP) indicate that these outcrops (presently at 28 and 30 meters above sea level) belong to MIS 3.1. Based on some considerations regarding the altitude of MIS 3.1 highstand, the correction for altitude with the local vertical tectonic movements and GIA of the Cannitello outcrops allows us to revise the eustatic altitude of this highstand. This is consistent with the recent findings (Gowan et al., 2020), which are based on a novel ice sheet modelling technique.</p><p>Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The Last Glacial Maximum. Science 325, 710–714. doi:10.1126/science.1172873</p><p>Gowan, E.J., Zhang, X., Khosravi, S., Rovere, A., Stocchi, P., Hughes, A. C., Gyllencreutz, R., Mangerud, J., Svendsen, J. I., Lohmann, G. (in print): Global ice sheet reconstruction for the past 80000 years. PANGEA, Earth & Environmental Science https://doi.org/10.1594/PANGAEA.905800.</p><p>Grant, K.M., Rohling, E.J., Ramsey, C.B., Cheng, H., Edwards, R.L., Florindo, F., Heslop, D., Marra, F., Roberts, A.P., Tamisiea, M.E., Williams, F., 2014. Sea-level variability over five glacial cycles. Nature Communications 5, 5076. doi:10.1038/ncomms6076</p><p>Hughes, P.D., Gibbard, P.L., Ehlers, J., 2013. Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’ (LGM). Earth-Science Reviews 125, 171–198. doi:10.1016/j.earscirev.2013.07.003</p><p>Shackleton, N.J., 2000. The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity. Science 289, 1897–1902. doi:10.1126/science.289.5486.1897</p><p>Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E., Labracherie, M., 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, EPILOG 21, 295–305. doi:10.1016/S0277-3791(01)00101-9</p>

2000 ◽  
Vol 30 ◽  
pp. 163-176 ◽  
Author(s):  
W. Richard Peltier ◽  
David L. Goldsby ◽  
David L. Kohlstedt ◽  
Lev Tarasov

AbstractState-of-the-art thermomechanical models of the modern Greenland ice sheet and the ancient Laurentide ice sheet that covered Canada at the Last Glacial Maximum (LGM) are not able to explain simultaneously the observed forms of these cryospheric structures when the same, anisotropy-enhanced, version of the conventional Glen flow law is employed to describe their rheology. The LGM Laurentide ice sheet, predicted to develop in response to orbital climate forcing, is such that the ratio of its thickness to its horizontal extent is extremely large compared to the aspect ratio inferred on the basis of surface-geomorphological and solid-earth-geophysical constraints. We show that if the Glen flow law representation of the rheology is replaced with a new rheology based upon very high quality laboratory measurements of the stress-strain-rate relation then the aspect ratios of both the modern Greenland ice sheet and the Laurentide ice sheet, that existed at the LGM, are simultaneously explained with little or no retuning of the flow law.


2001 ◽  
Vol 31 (1-4) ◽  
pp. 407-425 ◽  
Author(s):  
Juha Pekka Lunkka ◽  
Matti Saarnisto ◽  
Valeri Gey ◽  
Igor Demidov ◽  
Vera Kiselova

Sign in / Sign up

Export Citation Format

Share Document