scholarly journals Validation of three-component wind lidar sensor for traceable highly resolved wind vector measurements

2019 ◽  
Vol 8 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Stefan Oertel ◽  
Michael Eggert ◽  
Christian Gutsmuths ◽  
Paul Wilhelm ◽  
Harald Müller ◽  
...  

Abstract. Conventional monostatic wind lidar (light detection and ranging) systems are well-established wind speed remote sensing devices in the field of wind energy that provide reliable measurement results for flat terrain and homogeneous wind fields. These conventional wind lidar systems use a common transmitting and receiving unit and become unacceptably inaccurate as the wind fields become increasingly inhomogeneous due to their spatial and temporal averaging procedure (large measurement volume) that is inherent to the monostatic measurement principle. The new three-component fiber laser-based wind lidar sensor developed by the Physikalisch-Technische Bundesanstalt (PTB) uses one transmitting unit (fiber laser) and three receiving units to measure the velocity vector of single aerosols in a spatially highly resolved measurement volume (with diameter d and length l) in heights from 5 m (d=300 µm, l=2 mm) to 250 m (d=14 mm, l=4 m) with a resolution of about 0.1 m s−1. Detailed comparison measurements with a 135 m high wind met mast and a conventional lidar system have proven that the high spatial and temporal resolution of the new, so-called bistatic lidar leads to a reduced measurement uncertainty compared to conventional lidar systems. Furthermore, the comparison demonstrates that the deviation between the bistatic lidar and the wind met mast lies well within the measurement uncertainty of the cup anemometers of the wind met mast for both homogeneous and inhomogeneous wind fields. At PTB, the aim is to use the bistatic wind lidar as a traceable reference standard to calibrate other remote sensing devices, necessitating an in-depth validation of the bistatic lidar system and its measurement uncertainty. To this end, a new, specially designed wind tunnel with a laser Doppler anemometer (LDA) as flow velocity reference has been erected on a platform at a height of 8 m; this allows the new wind lidar to be positioned below the wind tunnel test section to be validated for wind vector measurements that are traceable to the SI units. A first validation measurement within the wind tunnel test section is presented, showing a deviation between the bistatic lidar system and the LDA clearly below 0.1 %.

AIAA Journal ◽  
1975 ◽  
Vol 13 (11) ◽  
pp. 1467-1471 ◽  
Author(s):  
L. A. Schutzenhofer ◽  
P. W. Howard

Author(s):  
Aline Aguiar da Franca ◽  
Dirk Abel

This article presents a concept of test section for a closed-return wind tunnel, where the lift force of an airfoil, which depends on the angle of attack, is controlled in real-time. This airfoil is used to represent a wind turbine blade. The lift force of the blades is what produces the rotor torque of the wind turbine. This torque determines the amount of energy that will be captured by the wind turbine. The linear dynamics of the motor used to change the angle of attack and the static non-linearity of the airfoil are modeled as a Wiener model. The Quadratic Dynamic Matrix Controller based on Wiener model with linearizing pre-compensation is implemented to keep the lift force constant, which is desirable to avoid mechanical loads for wind turbine applications.


2021 ◽  
Author(s):  
Robert Childs ◽  
Paul Stremel ◽  
Veronica Hawke ◽  
Joseph Garcia ◽  
William L. Kleb ◽  
...  

2021 ◽  
Vol 2057 (1) ◽  
pp. 012081
Author(s):  
A V Boiko ◽  
V I Borodulin ◽  
A V Ivanov ◽  
S V Kirilovskiy ◽  
D A Mischenko ◽  
...  

Abstract The laminar-turbulent transition in the boundary layer of a 45° swept wing model installed at zero attack angle in the test section of a subsonic wind-tunnel was detected with the help of an infrared camera. The camera recorded sequences of frames, the evolution of the preheated model surface temperature acquired and used for differentiating between the laminar and turbulent regions. The transition onset was evaluated at both sides of the model. Corresponding main flow computations in the virtual wind tunnel test section were performed at the same flow conditions with ANSYS Fluent. The computed main-flow velocity profiles along inviscid streamlines were used for analysis of hydrodynamic stability of the boundary layer with respect to Tollmien-Schlichting waves and stationary cross-flow vortices to obtain N-factor distributions along the model chord. A comparison of the experimental and the computed transition onsets was performed.


2000 ◽  
Author(s):  
Paul Soderman ◽  
Stephen Jaeger ◽  
Julie Hayes ◽  
Christopher Allen

Sign in / Sign up

Export Citation Format

Share Document