Design of a Wind Tunnel Test Section for Single Airfoil Configuration With Real-Time Lift Force Control

Author(s):  
Aline Aguiar da Franca ◽  
Dirk Abel

This article presents a concept of test section for a closed-return wind tunnel, where the lift force of an airfoil, which depends on the angle of attack, is controlled in real-time. This airfoil is used to represent a wind turbine blade. The lift force of the blades is what produces the rotor torque of the wind turbine. This torque determines the amount of energy that will be captured by the wind turbine. The linear dynamics of the motor used to change the angle of attack and the static non-linearity of the airfoil are modeled as a Wiener model. The Quadratic Dynamic Matrix Controller based on Wiener model with linearizing pre-compensation is implemented to keep the lift force constant, which is desirable to avoid mechanical loads for wind turbine applications.

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
S. Gómez-Iradi ◽  
R. Steijl ◽  
G. N. Barakos

This paper demonstrates the potential of a compressible Navier–Stokes CFD method for the analysis of horizontal axis wind turbines. The method was first validated against experimental data of the NREL/NASA-Ames Phase VI (Hand, et al., 2001, “Unsteady Aerodynamics Experiment Phase, VI: Wind Tunnel Test Configurations and Available Data Campaigns,” NREL, Technical Report No. TP-500-29955) wind-tunnel campaign at 7 m/s, 10 m/s, and 20 m/s freestreams for a nonyawed isolated rotor. Comparisons are shown for the surface pressure distributions at several stations along the blades as well as for the integrated thrust and torque values. In addition, a comparison between measurements and CFD results is shown for the local flow angle at several stations ahead of the wind turbine blades. For attached and moderately stalled flow conditions the thrust and torque predictions are fair, though improvements in the stalled flow regime are necessary to avoid overprediction of torque. Subsequently, the wind-tunnel wall effects on the blade aerodynamics, as well as the blade/tower interaction, were investigated. The selected case corresponded to 7 m/s up-wind wind turbine at 0 deg of yaw angle and a rotational speed of 72 rpm. The obtained results suggest that the present method can cope well with the flows encountered around wind turbines providing useful results for their aerodynamic performance and revealing flow details near and off the blades and tower.


2021 ◽  
pp. 0309524X2110445
Author(s):  
Hiroshi Noda ◽  
Takeshi Ishihara

Mean wind forces and peak pressures acting on ellipsoidal nacelles are investigated by wind tunnel tests. The wind force coefficients of the ellipsoidal nacelles for the wind turbine design and the peak pressure coefficients for the nacelle cover design are proposed based on the experimental data. The wind force coefficients are expressed as functions of yaw angles. The proposed formulas are compared with Eurocode, Germanischer Lloyd and ASCE7-16. It is found that the mean wind force coefficients for the wind turbine nacelles are slightly underestimated in Eurocode. The equivalent maximum and minimum mean pressure coefficients are proposed for use in Design Load Case 6.1 and Design Load Case 6.2 of IEC 61400-1. The peak pressure coefficients are derived using a quasi-steady theory. The proposed equivalent maximum and minimum mean pressure coefficients are much larger than those specified in Germanischer Lloyd.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 153 ◽  
Author(s):  
Omar M. A. M. Ibrahim ◽  
Shigeo Yoshida ◽  
Masahiro Hamasaki ◽  
Ao Takada

Complex terrain can influence wind turbine wakes and wind speed profiles in a wind farm. Consequently, predicting the performance of wind turbines and energy production over complex terrain is more difficult than it is over flat terrain. In this preliminary study, an engineering wake model, that considers acceleration on a two-dimensional hill, was developed based on the momentum theory. The model consists of the wake width and wake wind speed. The equation to calculate the rotor thrust, which is calculated by the wake wind speed profiles, was also formulated. Then, a wind-tunnel test was performed in simple flow conditions in order to investigate wake development over a two-dimensional hill. After this the wake model was compared with the wind-tunnel test, and the results obtained by using the new wake model were close to the wind-tunnel test results. Using the new wake model, it was possible to estimate the wake shrinkage in an accelerating two-dimensional wind field.


AIAA Journal ◽  
1975 ◽  
Vol 13 (11) ◽  
pp. 1467-1471 ◽  
Author(s):  
L. A. Schutzenhofer ◽  
P. W. Howard

2015 ◽  
Vol 2015.20 (0) ◽  
pp. 323-326
Author(s):  
Shuji SUZUKI ◽  
Shigemitsu AOKI ◽  
Kenichi SAKURAI ◽  
Tetsuya KOGAKI ◽  
Chuichi ARAKAWA ◽  
...  

2016 ◽  
Vol 90 ◽  
pp. 291-300 ◽  
Author(s):  
Qing'an Li ◽  
Takao Maeda ◽  
Yasunari Kamada ◽  
Junsuke Murata ◽  
Masayuki Yamamoto ◽  
...  

1977 ◽  
Vol 1 (6) ◽  
pp. 382-386 ◽  
Author(s):  
B.F. Blackwell ◽  
R.E. Sheldahl

Author(s):  
O. Eisele ◽  
G. Pechlivanoglou ◽  
C. N. Nayeri ◽  
C. O. Paschereit

Wind turbine blade design is currently based on the combination of a plurality of airfoil sections along the rotorblade span. The two-dimensional airfoil characteristics are usually measured with wind tunnel experiments or computed by means of numerical simulation codes. The general airfoil input for the calculation of the rotorblade power characteristics as well as the subsequent aerodynamic and aeroelastic loads are based on these two-dimensional airfoil characteristics. In this paper, the effects of inflow turbulence and wind tunnel test measurement deviations are investigated and discussed, to allow considerations of such effects in the rotorblade design process. The results of CFD simulations with various turbulence models are utilized in combination with wind tunnel measurements in order to assess the impact of such discrepancies. It seems that turbulence, airfoil surface roughness and early transition effects are able to contribute significantly to the uncertainty and scattering of measurements. Various wind tunnel facilities generate different performance characteristic curves, while grid-generated turbulence is generally not included in the wind tunnel measurements during airfoil characterization. Furthermore the correlation of grid-generated wind tunnel turbulence with the atmospheric turbulence time and length scales is not easily achieved. All the aforementioned uncertainties can increase the performance scattering of current wind turbine blade designs as well as the generated aeroelastic loads. A brief assessment of the effect of such uncertainties on wind turbine performance is given at the last part of this work by means of BEM simulations on a wind turbine blade.


Sign in / Sign up

Export Citation Format

Share Document