angle of attack
Recently Published Documents


TOTAL DOCUMENTS

2304
(FIVE YEARS 473)

H-INDEX

49
(FIVE YEARS 6)

Author(s):  
zixuan zhou ◽  
Xiuchang Huang ◽  
Jiajin Tian ◽  
Hongxing Hua ◽  
Ming Tang ◽  
...  

Abstract Reducing the rotor dynamic load is an important issue to improve the performance and reliability of a helicopter. The control mechanism of the actively controlled flap on the rotor dynamic load is numerically and experimentally investigated by a 3-blade helicopter rotor in this paper. In the aero-elastic numerical approach, the complex motion of the rotor such as the stretching, bending, torsion and pitching of the blade including the deflection of the actively controlled flap (ACF) are all taken into consideration in the structural formulation. The aerodynamic solution adopted the vortex lattice method combining with the free wake model, in which the influence of ACF on the free wake and the aerodynamic load on the blade is taken into account as well. While the experimental method of measuring hub loads and acoustic was accomplished by a rotor rig in a wind tunnel. The result shows that the 3/rev ACF actuation can reduce the $3\omega$ hub load by more than 50\% at maximum, which is significantly better than the 4/rev control. While 4/rev has greater potential to reduce BVI loads than 3/rev with $\mu=0.15$. Further mechanistic analysis shows that by changing the phase difference between the dynamic load on the flap and the rest of the blade, the peak load on the whole blade can be improved, thus achieving effective control of the hub dynamic load, the flap reaches the minimum angle of attack at 90°-100° azimuth under best control condition; when the BVI load is perfectly controlled, the flap reaches the minimum angle of attack at 140° azimuth, and by changing the circulation of the wake, the intensity of blade vortex interaction in the advancing side is improved. Moreover, an interesting finding in the optimal control of noise and vibration is that an overlap point exist on the motion patterns of the flap with different frequencies.


2022 ◽  
Vol 16 (2) ◽  
pp. 14-28
Author(s):  
A. M. Pavlenko ◽  
A. V. Bykov ◽  
B. Yu. Zanin ◽  
M. M. Katasonov

Investigations of the structure of the flow near the surface of a trapezoidal model of a small unmanned aerial vehicle were carried out when it enters a narrow turbulent wake. All experimental data were obtained in a wind tunnel at subsonic flow velocities. A feature of the work was that the study of the flow around the model was carried out at full-scale (flight) Reynolds numbers. Using the soot-oily visualization method, data on the features of the flow around the model were obtained, taking into account such factors as the angle of attack, the presence and absence of a source of external disturbances that generated a turbulent wake. The experiments were carried out in two flow regimes: at a zero angle of attack, when there are local separation bubbles on the wing, and at a large (supercritical) angle of attack of 18 degrees, when there is a global stall of the flow from the leading edge. It was shown that the turbulent wake has a significant effect on the nature of the flow near the model surface in both cases. Local separation bubbles gradually decrease in size with a decrease in the distance between the sources of disturbances and the wing. Large-scale vortices significantly decrease in geometrical dimensions and shift towards the side edges in the event of a global stall of the flow, thereby increasing the region of the attached flow on the model surface.


2022 ◽  
pp. 1-13
Author(s):  
Gian-Andrea Heinrich ◽  
Stephanie Vogt ◽  
Nicholas R. J. Lawrance ◽  
Thomas J. Stastny ◽  
Roland Y. Siegwart

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 460
Author(s):  
Yunli Nie ◽  
Dalei Song ◽  
Zhenyu Wang ◽  
Yan Huang ◽  
Hua Yang

The use of a multi-functional autonomous underwater vehicle (AUV) as a platform for making turbulence measurements in the ocean is developed. The layout optimization of the turbulence package and platform motion performance are limitation problems in turbulent AUV design. In this study, the computational fluid dynamics (CFD) method has been used to determine the optimized layout position and distance of the shear probe integrated into an AUV. When placed 0.8 D ahead of the AUV nose along the axis, the shear probe is not influenced by flow distortion and can contact the water body first. To analyze the motion of the turbulence AUV, the dynamic model of turbulence AUV for planar flight is obtained. Then, the mathematical equations of speed and angle of attack under steady-state motion have also been obtained. By calculating the hydrodynamic coefficients of the turbulence AUV and given system parameters, the simulation analysis has been conducted. The simulation results demonstrated that the speed of turbulent AUV is 0.5–1 m/s, and the maximum angle of attack is less than 6.5°, which meets the observation requirements of the shear probe. In addition, turbulence AUV conducted a series of sea-trials in the northern South China Sea to illustrate the validity of the design and measurement. Two continuous profiles (1000 m) with a horizontal distance of 10 km were completed, and numerous high-quality spatiotemporal turbulence data were obtained. These profiles demonstrate the superior flight performance of turbulence AUV. Analysis shows that the measured data are of high quality, with the shear spectra being in very good agreement with the Nasmyth spectrum. Dissipation rates are consistent with background shear. When shear velocity is weak, the measurement of dissipation rate is 10−10 W Kg−1. All indications are that the turbulence AUV is suitable for long-term, contiguous ocean microstructure measurements, which will provide data needed to understand the temporal and spatial variability of the turbulent processes in the oceans.


Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 165
Author(s):  
Angelo Lerro ◽  
Piero Gili ◽  
Marco Pisani

In the area of synthetic sensors for flow angle estimation, the present work aims to describe the verification in a relevant environment of a physics-based approach using a dedicated technological demonstrator. The flow angle synthetic solution is based on a model-free, or physics-based, scheme and, therefore, it is applicable to any flying body. The demonstrator also encompasses physical sensors that provide all the necessary inputs to the synthetic sensors to estimate the angle-of-attack and the angle-of-sideslip. The uncertainty budgets of the physical sensors are evaluated to corrupt the flight simulator data with the aim of reproducing a realistic scenario to verify the synthetic sensors. The proposed approach for the flow angle estimation is suitable for modern and future aircraft, such as drones and urban mobility air vehicles. The results presented in this work show that the proposed approach can be effective in relevant scenarios even though some limitations can arise.


2022 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Yuan Lin ◽  
Jin Guo ◽  
Haonan Li ◽  
Hai Zhu ◽  
Haocai Huang ◽  
...  

The hydrodynamic performance of a novel hovering autonomous underwater vehicle, the autonomous underwater helicopter (AUH), with an original disk-shaped hull (HG1) and an improved fore–aft asymmetric hull (HG3), is investigated by means of computational fluid dynamics with the adoption of overlapping mesh method. The hydrodynamic performance of the two hull shapes in surge motion with variation of the angle of attack is compared. The results show that HG3 has less resistance and higher motion stability compared to HG1. With the angle of attack reaching 10 degrees, both HG1 and HG3 achieve the maximum lift-to-drag ratio, which is higher for HG3 compared to HG1. Furthermore, based on the numerical simulation of the plane motion mechanism test (PMM) and according to Routh’s stability criterion, the horizontal movement and vertical movement stability indexes of HG1 and HG3 (GHHG1=1.0, GVHG1=49.7, GHHG2=1.0, GVHG3=2.1) are obtained, which further show that the AUH has better vertical movement stability than the torpedo-shaped AUV. Furthermore, the scale model tail velocity experiment indirectly shows that HG3 has better hydrodynamic performance than HG1.


2022 ◽  
Author(s):  
Samantha A. Miller ◽  
Derek Mamrol ◽  
Joel J. Redmond ◽  
Karl Jantze ◽  
Carlo Scalo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document