scholarly journals Understanding epistemic uncertainty in large-scale coastal flood risk assessment for present and future climates

Author(s):  
Michalis I. Vousdoukas ◽  
Dimitrios Bouziotas ◽  
Alessio Giardino ◽  
Laurens M. Bouwer ◽  
Evangelos Voukouvalas ◽  
...  

Abstract. An upscaling of flood risk assessment frameworks beyond regional and national scales has taken place during recent years, with a number of large-scale models emerging as tools for hotspot identification, support for international policy-making and harmonization of climate change adaptation strategies. There is, however, limited insight on the scaling effects and structural limitations of flood risk models and, therefore, the underlying uncertainty. In light of this, we examine key sources of epistemic uncertainty in the Coastal Flood Risk (CFR) modelling chain: (i) the inclusion and interaction of different hydraulic components leading to extreme sea-level (ESL); (ii) inundation modelling; (iii) the underlying uncertainty in the Digital Elevation Model (DEM); (iv) flood defence information; (v) the assumptions behind the use of depth-damage functions that express vulnerability; and (vi) different climate change projections. The impact of these uncertainties to estimated Expected Annual Damage (EAD) for present and future climates is evaluated in a dual case study in Faro, Portugal and in the Iberian Peninsula. The ranking of the uncertainty factors varies among the different case studies, baseline CFR estimates, as well as their absolute/relative changes. We find that uncertainty from ESL contributions, and in particular the way waves are treated, can be higher than the uncertainty of the two greenhouse gas emission projections and six climate models that are used. Of comparable importance is the quality of information on coastal protection levels and DEM information. In the absence of large-extent datasets with sufficient resolution and accuracy the latter two factors are the main bottlenecks in terms of large-scale CFR assessment quality.

2018 ◽  
Vol 18 (8) ◽  
pp. 2127-2142 ◽  
Author(s):  
Michalis I. Vousdoukas ◽  
Dimitrios Bouziotas ◽  
Alessio Giardino ◽  
Laurens M. Bouwer ◽  
Lorenzo Mentaschi ◽  
...  

Abstract. An upscaling of flood risk assessment frameworks beyond regional and national scales has taken place during recent years, with a number of large-scale models emerging as tools for hotspot identification, support for international policymaking, and harmonization of climate change adaptation strategies. There is, however, limited insight into the scaling effects and structural limitations of flood risk models and, therefore, the underlying uncertainty. In light of this, we examine key sources of epistemic uncertainty in the coastal flood risk (CFR) modelling chain: (i) the inclusion and interaction of different hydraulic components leading to extreme sea level (ESL), (ii) the underlying uncertainty in the digital elevation model (DEM), (iii) flood defence information, (iv) the assumptions behind the use of depth–damage functions that express vulnerability, and (v) different climate change projections. The impact of these uncertainties on estimated expected annual damage (EAD) for present and future climates is evaluated in a dual case study in Faro, Portugal, and on the Iberian Peninsula. The ranking of the uncertainty factors varies among the different case studies, baseline CFR estimates, and their absolute and relative changes. We find that uncertainty from ESL contributions, and in particular the way waves are treated, can be higher than the uncertainty of the two greenhouse gas emission projections and six climate models that are used. Of comparable importance is the quality of information on coastal protection levels and DEM information. In the absence of large datasets with sufficient resolution and accuracy, the latter two factors are the main bottlenecks in terms of large-scale CFR assessment quality.


2016 ◽  
Vol 11 (6) ◽  
pp. 1128-1136 ◽  
Author(s):  
Youngjoo Kwak ◽  
◽  
Yoichi Iwami ◽  

Globally, large-scale floods are one of the most serious disasters, considering increased frequency and intensity of heavy rainfall. This is not only a domestic problem but also an international water issue related to transboundary rivers in terms of global river flood risk assessment. The purpose of this study is to propose a rapid flood hazard model as a methodological possibility to be used on a global scale, which uses flood inundation depth and works reasonably despite low data availability. The method is designed to effectively simplify complexities involving hydrological and topographical variables in a flood risk-prone area when applied in an integrated global flood risk assessment framework. The model was used to evaluate flood hazard and exposure through pixel-based comparison in the case of extreme flood events caused by an annual maximum daily river discharge of 1/50 probability of occurrence under the condition of climate change between two periods, Present (daily data from 1980 to 2004) and Future (daily data from 2075 to 2099). As preliminary results, the maximum potential extent of inundation area and the maximum number of affected people show an upward trend in Present and Future.


2018 ◽  
Vol 134 ◽  
pp. 177-190 ◽  
Author(s):  
E.K. Christie ◽  
T. Spencer ◽  
D. Owen ◽  
A.L. McIvor ◽  
I. Möller ◽  
...  

2015 ◽  
Vol 9 (4) ◽  
pp. 390-401 ◽  
Author(s):  
A. Rueda ◽  
B. Gouldby ◽  
F.J. Méndez ◽  
A. Tomás ◽  
I.J. Losada ◽  
...  

Author(s):  
RICHARD DAWSON ◽  
PAUL SAYERS ◽  
JIM HALL ◽  
MOHAMMED HASSAN ◽  
PAUL BATES

2017 ◽  
Vol 144 ◽  
pp. 90-104 ◽  
Author(s):  
Susana Ferreira Silva ◽  
Marta Martinho ◽  
Rui Capitão ◽  
Teresa Reis ◽  
Conceição Joana Fortes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document