Tuning Agent's Profile for Similarity Measure in Description Logic ELH

Author(s):  
Teeradaj Racharak ◽  
Satoshi Tojo
2018 ◽  
Vol 37 (3) ◽  
pp. 581-613 ◽  
Author(s):  
Teeradaj Racharak ◽  
Boontawee Suntisrivaraporn ◽  
Satoshi Tojo

Author(s):  
Suwan Tongphu

<p>A similarity measure is one classical problem in Description Logic which aims at identifying the similarity between concepts in an ontology. Finding a hierarchy distance among concepts in an ontology is one popular technique. However, one major drawback of such a technique is that it usually ignores a concept definition analysis. This work introduces a new method for similarity measure. The proposed system semantically analyzes structures of two concept descriptions and then computes the similarity score based on the number of shared features. The efficiency of the proposed algorithm is measured by means of the satisfaction of desirable properties and intensive experiments on the Snomed ct ontology.</p>


Author(s):  
Mohana Priya K ◽  
Pooja Ragavi S ◽  
Krishna Priya G

Clustering is the process of grouping objects into subsets that have meaning in the context of a particular problem. It does not rely on predefined classes. It is referred to as an unsupervised learning method because no information is provided about the "right answer" for any of the objects. Many clustering algorithms have been proposed and are used based on different applications. Sentence clustering is one of best clustering technique. Hierarchical Clustering Algorithm is applied for multiple levels for accuracy. For tagging purpose POS tagger, porter stemmer is used. WordNet dictionary is utilized for determining the similarity by invoking the Jiang Conrath and Cosine similarity measure. Grouping is performed with respect to the highest similarity measure value with a mean threshold. This paper incorporates many parameters for finding similarity between words. In order to identify the disambiguated words, the sense identification is performed for the adjectives and comparison is performed. semcor and machine learning datasets are employed. On comparing with previous results for WSD, our work has improvised a lot which gives a percentage of 91.2%


Informatica ◽  
2018 ◽  
Vol 29 (3) ◽  
pp. 399-420
Author(s):  
Alessia Amelio ◽  
Darko Brodić ◽  
Radmila Janković

Sign in / Sign up

Export Citation Format

Share Document