scholarly journals A Real-time Integration of Semantics into Heterogeneous Sensor Stream Data with Context in the Internet of Things

Author(s):  
Besmir Sejdiu ◽  
Florije Ismaili ◽  
Lule Ahmedi
2020 ◽  
pp. 1260-1284
Author(s):  
Laura Belli ◽  
Simone Cirani ◽  
Luca Davoli ◽  
Gianluigi Ferrari ◽  
Lorenzo Melegari ◽  
...  

The Internet of Things (IoT) is expected to interconnect billions (around 50 by 2020) of heterogeneous sensor/actuator-equipped devices denoted as “Smart Objects” (SOs), characterized by constrained resources in terms of memory, processing, and communication reliability. Several IoT applications have real-time and low-latency requirements and must rely on architectures specifically designed to manage gigantic streams of information (in terms of number of data sources and transmission data rate). We refer to “Big Stream” as the paradigm which best fits the selected IoT scenario, in contrast to the traditional “Big Data” concept, which does not consider real-time constraints. Moreover, there are many security concerns related to IoT devices and to the Cloud. In this paper, we analyze security aspects in a novel Cloud architecture for Big Stream applications, which efficiently handles Big Stream data through a Graph-based platform and delivers processed data to consumers, with low latency. The authors detail each module defined in the system architecture, describing all refinements required to make the platform able to secure large data streams. An experimentation is also conducted in order to evaluate the performance of the proposed architecture when integrating security mechanisms.


Author(s):  
Luca Davoli ◽  
Laura Belli ◽  
Gianluigi Ferrari

The Internet of Things (IoT) paradigm is foreseeing the development of our environment towards new enriched spaces in most areas of modern living, such as digital health, smart cities, and smart agriculture. Several IoT applications also have real-time and low-latency requirements and must rely on specific architectures. The authors refer to the paradigm that best fits the selected IoT scenario as “Big Stream” because it considers real-time constraints. Moreover, the blockchain concept has drawn attention as the next-generation technology through the authentication of peers that share encryption and the generation of hash values. In addition, the blockchain can be applied in conjunction with Cloud Computing and the IoT paradigms, since it avoids the involvement of third parties in a broker-free way. In this chapter, an analysis on mechanisms that can be adopted to secure Big Stream data in a graph-based platform, thus delivering them to consumers in an efficient and secure way, and with low latency, is shown, describing all refinements required employing federation-based and blockchain paradigms.


Author(s):  
Luca Davoli ◽  
Laura Belli ◽  
Gianluigi Ferrari

The Internet of Things (IoT) paradigm is foreseeing the development of our environment towards new enriched spaces in most areas of modern living, such as digital health, smart cities, and smart agriculture. Several IoT applications also have real-time and low-latency requirements and must rely on specific architectures. The authors refer to the paradigm that best fits the selected IoT scenario as “Big Stream” because it considers real-time constraints. Moreover, the blockchain concept has drawn attention as the next-generation technology through the authentication of peers that share encryption and the generation of hash values. In addition, the blockchain can be applied in conjunction with Cloud Computing and the IoT paradigms, since it avoids the involvement of third parties in a broker-free way. In this chapter, an analysis on mechanisms that can be adopted to secure Big Stream data in a graph-based platform, thus delivering them to consumers in an efficient and secure way, and with low latency, is shown, describing all refinements required employing federation-based and blockchain paradigms.


Author(s):  
Laura Belli ◽  
Simone Cirani ◽  
Luca Davoli ◽  
Gianluigi Ferrari ◽  
Lorenzo Melegari ◽  
...  

The Internet of Things (IoT) is expected to interconnect billions (around 50 by 2020) of heterogeneous sensor/actuator-equipped devices denoted as “Smart Objects” (SOs), characterized by constrained resources in terms of memory, processing, and communication reliability. Several IoT applications have real-time and low-latency requirements and must rely on architectures specifically designed to manage gigantic streams of information (in terms of number of data sources and transmission data rate). We refer to “Big Stream” as the paradigm which best fits the selected IoT scenario, in contrast to the traditional “Big Data” concept, which does not consider real-time constraints. Moreover, there are many security concerns related to IoT devices and to the Cloud. In this paper, we analyze security aspects in a novel Cloud architecture for Big Stream applications, which efficiently handles Big Stream data through a Graph-based platform and delivers processed data to consumers, with low latency. The authors detail each module defined in the system architecture, describing all refinements required to make the platform able to secure large data streams. An experimentation is also conducted in order to evaluate the performance of the proposed architecture when integrating security mechanisms.


Sign in / Sign up

Export Citation Format

Share Document