scholarly journals On statistical acceleration convergence of double sequences

2017 ◽  
Vol 35 (2) ◽  
pp. 257
Author(s):  
Bipan Hazarika

In this article the notion of statistical acceleration convergence of double sequences in Pringsheim's sense has been introduced. We prove the decompostion theorems for  statistical acceleration convergence of double sequences and some theorems related to that concept have been established using the four dimensional matrix transformations. We provided some examples, where the results of acceleration convergence fails to hold for the statistical cases.

2004 ◽  
Vol 35 (2) ◽  
pp. 129-134 ◽  
Author(s):  
Richard F. Patterson

In 1945 Brudno presented the following important theorem: If $A$ and $B$ are regular summability matrix methods such that every bounded sequence summed by $A$ is also summed by $B$, then it is summed by $B$ to the same value. R. G. Cooke suggested that a simpler proof would be desirable. Petersen presented such a proof. The goal of the paper is to present an accessible multidimensional analog of Brudno theorem for double sequences using four dimensional matrix transformations.


2014 ◽  
Vol 51 (3) ◽  
pp. 335-356 ◽  
Author(s):  
Mohammad Mursaleen ◽  
Feyzi Başar

In this study, we define the spaces \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\tilde M_u ,\,\tilde C_p ,\,\tilde C_{0p} ,\,\tilde C_{bp} ,\,\tilde C_r \,{\text{and}}\,\tilde L_q$$ \end{document} of double sequences whose Cesàro transforms are bounded, convergent in the Pringsheim’s sense, null in the Pringsheim’s sense, both convergent in the Pringsheim’s sense and bounded, regularly convergent and absolutely q-summable, respectively, and also examine some properties of those sequence spaces. Furthermore, we show that these sequence spaces are Banach spaces. We determine the alpha-dual of the space \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\tilde M_u$$ \end{document} and the β(bp)-dual of the space \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\tilde C_r$$ \end{document}, and β(ϑ)-dual of the space \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\tilde C_\eta$$ \end{document} of double sequences, where ϑ, η ∈ {p, bp, r}. Finally, we characterize the classes (\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\tilde C_{bp}$$ \end{document}: Cϑ) and (μ: \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\tilde C_\vartheta$$ \end{document}) for ϑ ∈ {p, bp, r} of four dimensional matrix transformations, where μ is any given space of double sequences.


Filomat ◽  
2018 ◽  
Vol 32 (3) ◽  
pp. 1043-1053 ◽  
Author(s):  
Hüsamettin Çapan ◽  
Feyzi Başar

In this paper, we introduce the paranormed sequence space L(t) which is the generalization of the space Lq of all absolutely q-summable double sequences. We examine some topological properties of the space L(t) and determine its alpha-, beta- and gamma-duals. Finally, we characterize some classes of four-dimensional matrix transformations from the space L(t) into some spaces of double sequences.


2017 ◽  
Vol 37 (3) ◽  
pp. 99-111 ◽  
Author(s):  
Feyzi Başar ◽  
Hüsamettin Çapan

In this paper, we introduce the paranormed sequence space $\mathcal{M}_{u}(t)$ corresponding to the normed space $\mathcal{M}_{u}$ of bounded double sequences. We examine general topological properties of this space and determine its alpha-, beta- and gamma-duals. Furthermore, we characterize some classes of four-dimensional matrix transformations concerning this space and its dual spaces.


2007 ◽  
Vol 44 (1) ◽  
pp. 147-158 ◽  
Author(s):  
Richard Patterson ◽  
Ekrem Savaş

In 1945 Brudno presented the following important theorem: If A and B are regular summability matrix methods such that every bounded sequence summed by A is also summed by B , then it is summed by B to the same value. In 1960 Petersen extended Brudno’s theorem by using uniformly summable methods. The goal of this paper is to extend Petersen’s theorem to double sequences by using four dimensional matrix transformations and notion of uniformly summable methods for double sequences. In addition to this extension we shall also present an accessible analogue of this theorem.


2002 ◽  
Vol 30 (10) ◽  
pp. 637-643
Author(s):  
Richard F. Patterson

Following the concepts of divergent rate preservation for ordinary sequences, we present a notion of rates preservation of divergent double sequences underl-ltype transformations. Definitions for Pringsheim limit inferior and superior are also presented. These definitions and the notion of asymptotically equivalent double sequences, are used to present necessary and sufficient conditions on the entries of a four-dimensional matrix such that, the rate of divergence is preserved for a given double sequences underl-ltype mapping wherel=:{xk,l:∑k,l=1,1∞,∞|xk,l|<∞}.


Filomat ◽  
2011 ◽  
Vol 25 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Richard Patterson ◽  
Ekrem Savaş

In this paper the following sequence space is presented. Let [t] be a positive double sequence and define the sequence space ?''(t) = {complex sequences x : xk,l = O(tk,l)}. The set of geometrically dominated double sequences is defined as G'' = U r,s?(0,1) G(r, s) where G(r, s) = {complex sequences x : x k,l = O(rk sl)} for each r, s in the interval (0, 1). Using this definition, four dimensional matrix characterizations of l?,?, c'', and c0'' into G'' and into ?''(t) are presented. In addition to these definitions and characterizations it should be noted that this ensure a rate of converges of at least as fast as [t]. Other natural implications will also be presented.


2009 ◽  
Vol 49 (7-8) ◽  
pp. 1721-1731 ◽  
Author(s):  
A. Gökhan ◽  
R. Çolak ◽  
M. Mursaleen

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Kuddusi Kayaduman ◽  
Celal Çakan

We have characterized a new type of core for double sequences, -core, and determined the necessary and sufficient conditions on a four-dimensional matrix to yield -core-core for all .


Sign in / Sign up

Export Citation Format

Share Document