type mapping
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 74)

H-INDEX

20
(FIVE YEARS 5)

Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Maria Tsakiri ◽  
Eleni Koumoutsou ◽  
Ioannis P. Kokkoris ◽  
Panayiotis Trigas ◽  
Eleni Iliadou ◽  
...  

This study highlights the importance of including detailed (local-scale) biodiversity and ecosystem services data for land-use management and promotion of protected areas using the National Park and UNESCO Global Geopark of Chelmos-Vouraikos (Greece) as a case study. Along with the conducted field surveys and literature review for the National Park’s flora documentation, ecosystem type mapping and assessment of ecosystem services have been performed, following National and European Union (EU) guidelines for the Mapping and Assessment of Ecosystems and their Services (MAES) implementation across EU Member States. Main results include floristic diversity indicators, ecosystem type mapping and assessment, and ecosystem services identification and assessment of their actual and potential supply. By this, a scientifically informed baseline dataset was developed to support management and policy needs towards a holistic National Park management and a sustainable spatial planning for protected areas. Additionally, local scale ecosystem type and ecosystem services data have been produced as input for the MAES implementation in Greece and the EU.


2021 ◽  
Vol 13 (23) ◽  
pp. 4906
Author(s):  
Johnathan M. Bardsley ◽  
Marylesa Howard ◽  
Mark Lorang

We present a software package for the supervised classification of images useful for cover-type mapping of freshwater habitat (e.g., water surface, gravel bars, vegetation). The software allows the user to select a representative subset of pixels within a specific area of interest in the image that the user has identified as a cover-type habitat of interest. We developed a graphical user interface (GUI) that allows the user to select single pixels using a dot, line, or group of pixels within a defined polygon that appears to the user to have a spectral similarity. Histogram plots for each band of the selected ground-truth subset aid the user in determining whether to accept or reject it as input data for the classification processes. A statistical model, or classifier, is then built using this pixel subset to assign every pixel in the image to a best-fit group based on reflectance or spectral similarity. Ideally, a classifier incorporates both spectral and spatial information. In our software, we implement quadratic discriminant analysis (QDA) for spectral classification and choose three spatial methods—mode filtering, probability label relaxation, and Markov random fields—to incorporate spatial context after computation of the spectral type. This multi-step interactive process makes the software quantitatively robust, broadly applicable, and easily usable for cover-type mapping of rivers, their floodplains, wetlands often components of these functionally linked freshwater systems. Indeed, this supervised classification approach is helpful for a wide range of cover-type mapping applications in freshwater systems but also estuarine and coastal systems as well. However, it can also aid many other applications, specifically for automatic and quantitative extraction of pixels that represent the water surface area of rivers and floodplains.


2021 ◽  
Vol 13 (23) ◽  
pp. 4749
Author(s):  
George Azzari ◽  
Shruti Jain ◽  
Graham Jeffries ◽  
Talip Kilic ◽  
Siobhan Murray

This paper provides recommendations on how large-scale household surveys should be conducted to generate the data needed to train models for satellite-based crop type mapping in smallholder farming systems. The analysis focuses on maize cultivation in Malawi and Ethiopia, and leverages rich, georeferenced plot-level data from national household surveys that were conducted in 2018–20 and integrated with Sentinel-2 satellite imagery and complementary geospatial data. To identify the approach to survey data collection that yields optimal data for training remote sensing models, 26,250 in silico experiments are simulated within a machine learning framework. The best model is then applied to map seasonal maize cultivation from 2016 to 2019 at 10-m resolution in both countries. The analysis reveals that smallholder plots with maize cultivation can be identified with up to 75% accuracy. Collecting full plot boundaries or complete plot corner points provides the best quality of information for model training. Classification performance peaks with slightly less than 60% of the training data. Seemingly little erosion in accuracy under less preferable approaches to georeferencing plots results in the total area under maize cultivation being overestimated by 0.16–0.47 million hectares (8–24%) in Malawi.


2021 ◽  
Vol 13 (22) ◽  
pp. 4668
Author(s):  
Stella Ofori-Ampofo ◽  
Charlotte Pelletier ◽  
Stefan Lang

Crop maps are key inputs for crop inventory production and yield estimation and can inform the implementation of effective farm management practices. Producing these maps at detailed scales requires exhaustive field surveys that can be laborious, time-consuming, and expensive to replicate. With a growing archive of remote sensing data, there are enormous opportunities to exploit dense satellite image time series (SITS), temporal sequences of images over the same area. Generally, crop type mapping relies on single-sensor inputs and is solved with the help of traditional learning algorithms such as random forests or support vector machines. Nowadays, deep learning techniques have brought significant improvements by leveraging information in both spatial and temporal dimensions, which are relevant in crop studies. The concurrent availability of Sentinel-1 (synthetic aperture radar) and Sentinel-2 (optical) data offers a great opportunity to utilize them jointly; however, optimizing their synergy has been understudied with deep learning techniques. In this work, we analyze and compare three fusion strategies (input, layer, and decision levels) to identify the best strategy that optimizes optical-radar classification performance. They are applied to a recent architecture, notably, the pixel-set encoder–temporal attention encoder (PSE-TAE) developed specifically for object-based classification of SITS and based on self-attention mechanisms. Experiments are carried out in Brittany, in the northwest of France, with Sentinel-1 and Sentinel-2 time series. Input and layer-level fusion competitively achieved the best overall F-score surpassing decision-level fusion by 2%. On a per-class basis, decision-level fusion increased the accuracy of dominant classes, whereas layer-level fusion improves up to 13% for minority classes. Against single-sensor baseline, multi-sensor fusion strategies identified crop types more accurately: for example, input-level outperformed Sentinel-2 and Sentinel-1 by 3% and 9% in F-score, respectively. We have also conducted experiments that showed the importance of fusion for early time series classification and under high cloud cover condition.


2021 ◽  
Vol 13 (22) ◽  
pp. 4599
Author(s):  
Félix Quinton ◽  
Loic Landrieu

While annual crop rotations play a crucial role for agricultural optimization, they have been largely ignored for automated crop type mapping. In this paper, we take advantage of the increasing quantity of annotated satellite data to propose to model simultaneously the inter- and intra-annual agricultural dynamics of yearly parcel classification with a deep learning approach. Along with simple training adjustments, our model provides an improvement of over 6.3% mIoU over the current state-of-the-art of crop classification, and a reduction of over 21% of the error rate. Furthermore, we release the first large-scale multi-year agricultural dataset with over 300,000 annotated parcels.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Pragati Gautam ◽  
Santosh Kumar ◽  
Swapnil Verma ◽  
Gauri Gupta

This paper is aimed at acquainting with a new Kannan F -expanding type mapping by the approach of Wardowski in the complete metric space. We establish some fixed point results for Kannan F -expanding type mapping and F -contractive type mappings which satisfy F -contraction conditions. Additionally, some new results are given which generalize several results present in the literature. Moreover, some applications and examples are provided to show the practicality of our results.


2021 ◽  
pp. 161-180
Author(s):  
Pranay Panjala ◽  
Murali Krishna Gumma ◽  
Pardhasaradhi Teluguntla

Sign in / Sign up

Export Citation Format

Share Document