scholarly journals A Joint Channel-Network Coding Based on Product Codes for the Multiple-Access Relay Channel

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Tafzeel ur Rehman Ahsin ◽  
Slimane Ben Slimane

The multiple access relay channel with network coding has the potential to achieve diversity and improve coverage of wireless networks. Its network coding scheme provides an extra redundancy that can be used at the receiver to improve the performance of the cooperating users. This paper shows that the combination of channel coding and network coding, in the multiple access relay channel, can be seen as a product code with rows formed by the code-words of the individual channel codes of the users and columns formed by the network coding code-words. This new representation allows the use of any decoding algorithm of product codes at the receiver to decode the information data of the cooperating users. This decoding process is a complete joint channel-network decoding algorithm as it sees the combination of the two coding schemes as a single coding scheme. It also gives the possibility to use network coding schemes more powerful than conventional XOR-based network coding. The obtained results show that the proposed product-based network coding structure can improve the performance of the multiple-access relay channel without reducing its efficiency and allow a very flexible cooperation between the involved users.

Author(s):  
Jung Hyun Bae ◽  
Ahmed Abotabl ◽  
Hsien-Ping Lin ◽  
Kee-Bong Song ◽  
Jungwon Lee

AbstractA 5G new radio cellular system is characterized by three main usage scenarios of enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC), and massive machine type communications, which require improved throughput, latency, and reliability compared with a 4G system. This overview paper discusses key characteristics of 5G channel coding schemes which are mainly designed for the eMBB scenario as well as for partial support of the URLLC scenario focusing on low latency. Two capacity-achieving channel coding schemes of low-density parity-check (LDPC) codes and polar codes have been adopted for 5G where the former is for user data and the latter is for control information. As a coding scheme for data, 5G LDPC codes are designed to support high throughput, a variable code rate and length and hybrid automatic repeat request in addition to good error correcting capability. 5G polar codes, as a coding scheme for control, are designed to perform well with short block length while addressing a latency issue of successive cancellation decoding.


Sign in / Sign up

Export Citation Format

Share Document