ISRN Communications and Networking
Latest Publications


TOTAL DOCUMENTS

67
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

Published By Hindawi (International Scholarly Research Network)

2090-4363, 2090-4355

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
N. Ramli ◽  
M. T. Ali ◽  
M. T. Islam ◽  
A. L. Yusof ◽  
S. Muhamud-Kayat ◽  
...  

The aim of this paper is to design a novel structure of a frequency-reconfigurable microstrip array antenna by using a combination of aperture-coupled and the stacked patch technology. The four sets of two different aperture slot shapes (I-shaped and H-shaped) are printed on the ground and are functional to transfer the wave and the signal to the selected radiating layers. Both aperture slot positions are based on the bottom patches (layer 2) and top patches (layer 1), respectively. To achieve the frequency reconfigurability, four PIN diode switches are integrated on the feed line layer positioned between both aperture slots on the ground. The activation of the selected patches will determine the current operating frequency of the proposed antenna. A 2.6 GHz or 3.5 GHz frequency is achieved by switching all the PIN diode switches to ON or OFF mode synchronously. The advantage of the proposed antenna is that it can minimize the usage of the antenna’s surface area, with different size of the patch having different operating frequencies, sorted in different layer. The measured results of the return losses, radiation patterns, and the practical indoor propagation measurement achieved good agreement with the simulated results.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Monika Sachdeva ◽  
Krishan Kumar

The detection of distributed denial of service (DDoS) attacks is one of the hardest problems confronted by the network security researchers. Flash event (FE), which is caused by a large number of legitimate requests, has similar characteristics to those of DDoS attacks. Moreover DDoS attacks and FEs require altogether different handling procedures. So discriminating DDoS attacks from FEs is very important. But the research involving DDoS detection has not laid enough emphasis on including FEs scenarios in the experiments. In this paper, we are using traffic cluster entropy as detection metric not only to detect DDoS attacks but also to distinguish DDoS attacks from FEs. We have validated our approach on cyber-defense technology experimental research laboratory (DETER) testbed. Different emulation scenarios are created on DETER using mix of legitimate, flash, and different types of attacks at varying strengths. It is found that, when flash event is triggered, source address entropy increases but the corresponding traffic cluster entropy does not increase. However, when DDoS attack is launched, traffic cluster entropy also increases along with source address entropy. An analysis of live traces on DETER testbed clearly manifests supremacy of our approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Ricardo Mendes Costa Segundo ◽  
Celso Alberto Saibel Santos

Context. Interactive TV has not reached yet its full potential. How to make the use of interactivity in television content viable and attractive is something in evolution that can be seen with the popularization of new approaches as the use of second screen as interactive platform. Objective. This study aims at surveying existing research on Multiple Contents TV Synchronization in order to synthesize their results, classify works with common points, and identify needs for future research. Method. This paper reports the results of a systematic literature review and mapping study on TV Multiple Contents Synchronization published until middle 2013. As result, a set of 68 papers was generated and analyzed considering general information such as sources and time of publication; covered research topics; and synchronization aspects such as methods, channels, and precision. Results. Based on the obtained data, the paper provides a high level overview of the analyzed works; a detailed exploration of each used and proposed technique and its applications; and a discussion and proposal of a scenario overview and classification scheme based on the extracted data.


2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
Rajesh Anbazhagan ◽  
Nakkeeran Rangaswamy

The performance of two-hop contention based bandwidth request (BR) mechanism for WiMAX relay networks is investigated under ITU-R path loss models. In conventional WiMAX systems, the mobile stations (MS) update their contention window irrespective of their transmission failures. Those systems update their contention window on collision and due to channel error or unavailability of bandwidth. Further, these failure models have been suggested for single hop networks. The failure model in two-hop systems becomes complex since it may include additional failure events such as improper detection of codes and channel error due to varying path loss. Interestingly, these failure events (collision, channel error, unavailability of bandwidth, and improper detection of codes) do not occur evenly for both hops of a link. Hence, to set the contention window effectively, unique failure models are developed by considering the characteristics of BR mechanism and hop at which the BR is performed. In the proposed system, the two-hop BR is carried out with all combinations of message and code bandwidth request schemes. Among them, the message-code BR mechanism performs better under suburban fixed and outdoor to indoor or pedestrian environment, and code-code BR scheme performs better for vehicular environment.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Onur Sahin ◽  
Jialing Li ◽  
Enoch Lu ◽  
Yingxue Li ◽  
Philip J. Pietraski

We present a practical interference management scheme for heterogeneous networks (HetNets). The underlying ideas are based on (i) Han-Kobayashi-type message splitting (MS) where the receivers decode and cancel “part” of the interference which is accordingly optimized by the transmitters to ensure decoding and (ii) opportunistic interference cancellation (OIC) where the interfering transmitters act independently of the receivers that employ interference cancellation. We develop a novel transmission and reception scheme, called joint MS and OIC (MS-OIC), that engages both MS and OIC to account for a practical HetNet system with multiple macrocells and femtocells. The MS component includes a precoder design that judiciously maximizes the weighted sum throughput via the enabling of interference cancellation. A system design along with a novel scheduler that facilitates MS-OIC in a general HetNet system is also developed. System level simulations for a general HetNet system are presented, and the proposed MS-OIC scheme is compared with benchmark schemes such as Coordinated Beamforming (CBF) and joint CBF and Almost Blank Subframes (CBF-ABS). It is observed that the proposed MS-OIC scheme improves the macrocell throughput substantially, balances the achievable rates between the macrocell and femtocell users, and provides significant outage performance improvement in the system.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
V. Dehghanian ◽  
A. Broumandan ◽  
M. Zaheri ◽  
J. Nielsen

Small portable Global Navigation Satellite System (GNSS) receivers have revolutionized personal navigation through providing real-time location information for mobile users. Nonetheless, signal fading due to multipath remains a formidable limitation and compromises the performance of GNSS receivers. Antenna diversity techniques, including spatial and polarization diversity, can be used to mitigate multipath fading; however, the relatively large size of the spatially distributed antenna system required is incompatible with the small physical size constraints of a GNSS handheld receiver. User mobility inevitably results in motion of the handset that can be exploited to achieve diversity gain through forming a spatially distributed synthetic array. Traditionally, such motion has been construed as detrimental as it decorrelates the received signal undermining the coherent integration processing gain generally necessary for acquiring weak faded GNSS signals. In this paper the processing gain enhancement resulting from a dual-polarized synthetic array antenna, compatible with size constraints of a small handset that takes advantage of any user imposed motion, is explored. Theoretical analysis and experimental verifications attest the effectiveness of the proposed dual-polarized synthetic array technique by demonstrating an improvement in the processing gain of the GNSS signal acquisition operation.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
F. A. Kuipers

Network survivability—the ability to maintain operation when one or a few network components fail—is indispensable for present-day networks. In this paper, we characterize three main components in establishing network survivability for an existing network, namely, (1) determining network connectivity, (2) augmenting the network, and (3) finding disjoint paths. We present a concise overview of network survivability algorithms, where we focus on presenting a few polynomial-time algorithms that could be implemented by practitioners and give references to more involved algorithms.


2012 ◽  
Vol 2012 ◽  
pp. 1-23 ◽  
Author(s):  
András Faragó

A typical feature of huge, random network topologies is that they are too large to allow a fully detailed description. Such enormous, complex network topologies are encountered in numerous settings and have generated many research investigations. Well-known examples are the Internet and its logical overlay networks, such as the World Wide Web as well as online social networks. At the same time, extensive and rapidly growing wireless ad hoc and sensor networks also lead to hard topology modeling questions. In the current paper, we primarily focus on large, random wireless networks but also consider Web and Internet models. We survey a number of existing models that aim at describing the network topology. We also exhibit common generalizations of various sets of models that cover a number of known constructions as special cases. We demonstrate that higher levels of abstraction, despite their very general nature, can still be meaningfully analyzed and offers quite useful and unique help in solving certain hard networking problems. We believe that this research area can and will generate further significant contributions to the analysis of very large networks.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Jasmina Baraković Husić ◽  
Himzo Bajrić ◽  
Sabina Baraković

Next Generation Network (NGN) faces the challenge of the rapidly increasing amount of signaling. The growing amount of signaling is a consequence of several reasons arising from the fact that signaling is the main source of network intelligence, analysis, and user behavior monitoring. With the increase in signaling load and complexity, the network management becomes a challenging issue that can impact overall Quality of Service (QoS). To confront this issue, there is a need for reliable and forehand signaling transmission in NGN. As there is much confusion about the interpretation of this concept, this paper aims to provide an overview of the evolution of signaling transmission. Migration towards NGN is analyzed from the signaling perspective. The NGN signaling protocols and related transmission requirements are identified. Through the discussion of standard approaches, the paper considers our previously published approach to signaling transmission along with the current issues and emerging opportunities.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Tosmate Cheocherngngarn ◽  
Jean Andrian ◽  
Deng Pan

Recently, energy efficiency or green IT has become a hot issue for many IT infrastructures as they attempt to utilize energy-efficient strategies in their enterprise IT systems in order to minimize operational costs. Networking devices are shared resources connecting important IT infrastructures, especially in a data center network they are always operated 24/7 which consume a huge amount of energy, and it has been obviously shown that this energy consumption is largely independent of the traffic through the devices. As a result, power consumption in networking devices is becoming more and more a critical problem, which is of interest for both research community and general public. Multicast benefits group communications in saving link bandwidth and improving application throughput, both of which are important for green data center. In this paper, we study the deployment strategy of multicast switches in hybrid mode in energy-aware data center network: a case of famous fat-tree topology. The objective is to find the best location to deploy multicast switch not only to achieve optimal bandwidth utilization but also to minimize power consumption. We show that it is possible to easily achieve nearly 50% of energy consumption after applying our proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document